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Guaranteed Cost Control for Networked Control Systems Based on an
Improved Predictive Control Method

Rui Wang, Guo-Ping Liu, Wei Wang, David Rees, and Yunbo B. Zhao

Abstract—This brief deals with the problem of guaranteed cost
control for a class of uncertain networked control systems with
time-varying delay. An improved predictive controller design
strategy is proposed to compensate for the delay and data dropout
in both the forward and backward channels to achieve the de-
sired control performance. The varying controller gains which
are designed to vary with delays can lead to less conservative
results. Meanwhile, an algorithm involving a convex optimization
problem is presented to achieve a suboptimal guaranteed cost.
Furthermore, a numerical simulation and a practical experiment
are given to illustrate the effectiveness of the proposed method.

Index Terms—Guaranteed cost control, linear matrix inequali-
ties (LMlIs), networked control system (NCS), predictive control,
switched systems.

I. INTRODUCTION

N RECENT years, considerable attention has been paid
I to networked control systems (NCSs) in which the control
loops are closed via a communication network [1]—[8]. There
are many advantages to NCSs, such as reduced system wiring,
facilitated system maintenance, and increased systems flexi-
bility.

However, due to the insertion of communication channels,
this brings many challenging problems such as network-induced
delay, data packet dropout, etc. These issues are detremental to
the performance of the system and can make the system un-
stable. There are a number of design methods that have been
proposed to deal with this problem [9]-[13]. For example, in
[9], the optimal stochastic control method deals with the effects
of random network delays in NCS as a linear quadratic Gaussian
problem. The H, control problem has been studied in [12] for a
class of NCSs, taking account of the effects of both the network-
induced delay and data dropout, based on Lyapunov—Krasovskii
method. However, in these control methods, the system just pas-
sively accepts the presence of the delay in the network rather
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than actively compensating for it. In order to overcome the neg-
ative impact of the network delay on system stability and per-
formance, a networked predictive control (NPC) scheme which
is an active control strategy is proposed in [14]-[17]. This in-
cludes a control prediction generator (CPG) at the controller
side and a network delay compensator (NDC) at the actuator
side, and it is shown to be an effective method of addressing
this problem. However, in these publications a fixed controller
gain was used, and the controller gain design problem was not
considered. This results in a significant conservative design be-
cause the controller gain does not reflect the range of possible
delays in the network. Thus, a new technique needs to be devel-
oped to address this issue.

In designing a controller for a real plant, it is invariably nec-
essary to design a control system which not only is stable but
also possesses a strong robust performance. One way to deal
with this is the so-called guaranteed cost control approach pro-
posed by Chang and Peng [18]. This addresses the robust per-
formance problem and has the advantage of providing an upper
bound on a given performance index guaranteeing that system
performance degradation incurred by uncertainty is less than
this bound. Many results have appeared on this topic [19]-[24].
For NCSs, it is important to design a guaranteed cost controller
such that the NCSs are stable and satisfy a performance index.

In this brief, we are concerned with the design problem of
guaranteed cost controller for a class of uncertain NCSs by em-
ploying the modified compensation scheme. Network delay and
data dropout are considered in both forward and feedback chan-
nels. An improved predictive controller scheme in which the
controller gain varies with the delays in both the channels is
proposed to make the corresponding closed-loop system asymp-
totically stable for all admissible uncertainties. In contrast with
some existing references which are based on the fixed controller
gain approach, these varying feedback controller gains can lead
to less conservative results. Moreover, an iterative algorithm in-
volving convex-optimization is presented to design the desired
controllers with a suboptimal guaranteed cost.

This brief is organized as follows. In Section II, preliminaries
and problem formulations are introduced. Section III gives the
sufficient condition of guaranteed cost control and the algorithm
of controller design. Section IV provides two examples to show
the effectiveness of the proposed method. Conclusions are sum-
marized in Section V.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

In this brief, * denotes the symmetric block in one symmetric
matrix. I denotes the identity matrix of an appropriate dimen-
sion. The trace of a matrix is denoted by ¢r(-).

The NCS system structure considered in this brief is shown
in Fig. 1, where f; and k; are the backward and forward channel
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Fig. 1. NPC system structure.

delays, respectively. The plant is modelled in the following dis-
crete-time state space form:

Tt41 = (A + AA)LI}'t + But Yt = C.I't (1)
where z; € R™, uy € R™, and y, € RP denote the state vector,
control input and controlled output, respectively; A, B, and C
are known constant matrices with appropriate dimensions. A A

is real-valued matrix representing time-varying parameter un-
certainties, and has the following form:

AA=DFEFE

where D, E are known constant matrices of appropriate dimen-
sions, F} is an unknown matrix function satisfying

FTF,<1I.

r¢ € R™ is the reference input. Without loss of generality, 7 is
assumed to be zero throughout this brief.

In order to measure the network delay, a time stamp signal
is transmitted together with the control predictions [25]. Al-
though computer communication networks may not have this
capability, time-triggered protocols (e.g., Flexray) would prob-
ably be able to support a time-delay measurement.

The guaranteed cost function associated with system (1) is
given by

“+o0

J =" (xf Qus + uf Ruy) 2)

t=0

where () and R are positive definite weighted matrices.

Associated with the cost function (2), the guaranteed cost
controller is defined as follows.

Definition 1: Consider the uncertain system (1) and cost func-
tion (2). If there exists a control law u} and a positive scalar J*
such that for all admissible uncertainties, the closed-loop system
is asymptotically stable and the value of the cost function (2)
satisfies J < J*, then J* is said to be a guaranteed cost and u;
is said to be a guaranteed cost control law.

The following assumptions are adopted.

Assumption 1: The upper bounds of the time-varying
network delays k; in the forward channel and the feedback
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channel f; are not greater than IV and N», respectively, where
N; and N, are positive integers, i.e., &y € {0,1,---, Ny},
fr € {0,1,---, Ny}, where t = 0,1,2,---, denotes the sam-
pling instant.

Assumption 2: The number of consecutive data dropouts in
the forward channel and the feedback channel are less than L
and Lo, respectively, both of which are positive integers. So the
upper bound number of consecutive data dropouts and network
delay is equal to N = N1 + No + L1 + Lo.

III. GUARANTEED COST CONTROL USING PREDICTIVE
CONTROLLER FOR NCSs

A. Prediction of Future Control Sequence
If the state vector x is not available, the state observer is de-
signed as

Zi't+1 = Alit + But + L(’yt — C.’it) (3)

where ; € R" is the observed state and u; € R™ is the input
of the observer at time ¢, respectively, L is the observer gain to
be designed later.

For the system without time delay, the controller is designed
as follows:

Uy = KO'/i:t (4)

where Ky € R™*" is the control gain matrix to be determined.
When there are time-varying delay and data dropout in the
feedback channel, the predictive controller from time ¢ — f; + 1
to ¢ is constructed as
Ui fot1fi—f, = Kadip,
Ui, t2)t—f, = KoTij,

Upp—f, = Kyp &g,

where f; = 0,1,..., Ny + Lo.

When time-varying delay and data dropout happen in the for-
ward channel, the predictive controller from ¢ + 1 to t + k; is
constructed as

Uryrfe—f, = Kfp18e-p,
Uppofe—f, = K, 421§,

Utkle—f, = Kf vk, Do g,

where k; = 0,1,..., Ny + L.
Thus, the state feedback controller can be given as

Ut|t—f—ky = Kt i, e—f—ky fi+ki=0,1,....,N. (5

Therefore observer (3) can be written as

if?t+1 = (A — LC)Lth + BKiii't_i + LC.Tt,
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The closed-loop system of system (1) can be written as

Ti41 = (A + AA).Tt + But_i
=(A+ AA)z, + BK;#_;, i=0,1,...,N. (7)

Combining (5)—(7) gives the augmented switched system

Xt+1 = Ath (8)
where
Xy = [xzvxz—l7 e 7:17?—1'7:1:;—1‘—17 e 7I?—N7
N N N N N T
37;‘511,3731,1, e 7373171': e 7x317N717xg;N]
I =
A“‘[m FJ
with
ﬁ - -A-i-AA OnxNn
L INn 0Nn><n
= _ Onxin BK; Onx(N=i)n ]
‘ _0(N+l)n><’in 0(N—|—l)n)<n 0(N+1)7L><(N—i)n
U = LC OnXNn
_ONan ONnXNn
T = A—-LC Onx(ifl)n BK; OnX(Nfi)n )
' I, Iicvm Iv—iyn ONnxn

B. Sufficient Conditions for Guaranteed Cost Control

Theorem 1: Consider system (8) and the cost function (2). If
there exist positive definite matrix P > 0 such that the following
matrix inequalities:

ATPA, —P+Q+R<0 )
hold, where
o [ KTRK; onx@m)n]
O N+1)nx(2N+2)n
5 _ [ Q 0n><(2N+1)n]
ON+1)nx (@2N+2)n

then system (8) with the controllers (5) is asymptotically stable
and the cost function (2) satisfies the following bound:
J < X§ PXo. (10)

Proof: This is given in the Appendix.
Theorem 1 provides sufficient conditions for guaranteed cost
controller design. However, inequalities (9) are not in the form
of LMIs if the controller gains are to be determined. We will

give LMIs conditions for determining the controller gains in the
next subsection.

C. Design of Guaranteed Cost Controller

In the following, Theorem 1 is extended to design the con-
troller gains K; for system (8).
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Theorem 2: Consider system (8) and the cost function (2). If
there exist positive definite matrix P > 0 such that the following
matrix inequalities:

—-P+Q+ETE A" ITKF
* DDT — p1 0 <0 11
* * —R1
hold, where
I=[I0---0]
D=[D"0--- 0"
E=[E0 0]
- I =;
A=y ¢
where
A Opxn
H — nxXIiNn
|:I]\Tn 0Nn><n:|

and =Z;, U, I'; are defined in (8). Then system (8) with the con-
trollers (5) is asymptotically stable and the cost function (2) sat-
isfies (10).

Proof: This is given in the Appendix.

Remark 1: The conditions for the guaranteed cost controller
synthesis problem in Theorem 2 are difficult to solve because
A; contain K; and L. In the following, we separate K; and L
from A; in order to solve the controller gain K; and L using
LMI control toolbox.

Define matrices

5= Lot
0(2N+1)n><m

O(N+1)nxm
By =
0Nn><m
~ O(N—I—l)nxn
1= I,
0Nn><n

C = [C Oprn -C Opr'n]

Iy = [Onx(N-I—l)n I, OnXNn]

I = [Onx(N+2)n I, OnX(N—l)n] RN
Ii = [0nx(NtitD)n In Onx (N —i)n]

~ II

i O(N+1)nx(N+1)n

- O(N+1)nx(N+1)n
where II is defined in Theorem 2.
Then A; can be written as
A; = A+ BiK,I; + ILC + BoK; ;. (12)
It follows from (11) and (12) that (See equation at bottom of
page)
—P+Q+ETE (A+BlKi!ij-fLC’+BzKiIi)T jTKZT
* DDT —p-1 0
* * R~
<0 (13)

In view of the above, we can now obtain the following the-
orem.
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Theorem 3: Consider system (8) and the cost function (2). If
there exist positive definite matrix P > 0 such that the matrix
inequalities (13) hold, then system (8) with the controllers (5) is
asymptotically stable and the cost function (2) satisfies (10).

Remark 2: 1t is noted that condition (13) are not LMIs con-
ditions because of the terms P and P~'. However, by using a
cone complementary linearization algorithm proposed in [26],
the original non-convex optimization problem can be converted
to a LMI-based minimization problem, and by applying a re-
lated iterative algorithm, the suboptimal guaranteed cost can be
obtained.

First, by replacing the term P~ in (13) by W, we get

—P+Q+ETE (A+B K, I;+ILC+B,K;I,)T ITKT
% DDT-w 0
* * Rt
<0 (14

Then, inequalities (13) are transformed into LMIs (14), and the
minimization problem involving LMIs constraints can be for-
mulated as follows:

minimize trace (PW)
subject to (14)

P I
[1 W] 20 {as)
- XF
[Xo _ISV] < 0. (16)

D. Algorithm

We give the following iterative algorithm to solve the afore-
mentioned nonlinear problem. Note that here we use (13) as a
stopping criterion in the iterative algorithm in the following pro-
cedure since it is numerically very difficult in practice to obtain
the optimal solution, and thus only the suboptimal guaranteed
cost can be obtained within a specified number of iterations.

Step 1) Choose a sufficiently large initial v such that there
exists a feasible solution to LMIs conditions in
(14)-(16).

Step 2) Find a feasible solution P, W, K;, L satisfying LMIs
in (14)—(16). Set k = 0.

Step 3) Solve the following LMIs problem for the variables
P,W:

minimize trace (P, W + PWy)
subject to LMIs in (14)—(16).

Step 4) If condition (13) is satisfied, then return to Step
2) after decreasing vy to some extent. If conditions
(14)—(16) are not satisfied within a specified number
of iterations, then exit. Otherwise, set k = k + 1,

Pry1 = P, Wiy1 = W and go to Step 3).
Remark 3: In our papers [14]-[17], state feedback u; =
Kz,_; is used, where K is fixed and it is given for the case
where there is no delay or data packet dropout in both channels.
Compared with this, the proposed approach in this brief relaxes
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this requirement by designing multiple controller gains which
can vary with time delay. Thus this approach is more appro-
priate for practical systems.

Remark 4: There exist various types of networked control
systems with uncertainties in practice, e.g., fieldbus control sys-
tems, which are widely used in industrial process control. It is
important to ensure a closed-loop networked control system can
achieve the required performance even though there are uncer-
tainties or modelling errors in the system. The proposed control
strategy and derived results in this brief provide an effective way
of solving this issue.

IV. SIMULATION AND EXPERIMENT

In this section, numerical and experimental examples are con-
sidered to illustrate the effectiveness of the proposed design ap-
proach to NCSs.

A. Numerical Simulation

Example 1: Consider an open-loop unstable uncertain dis-
crete system in the form of (1) with the following system ma-
trices:

[ 1.01 0.2710 —0.4880
A= 104820 0.1 0.24
0.0020 0.3681  0.7070
(5 5
B=|3 -2
15 4
(1 2 3
C= 14 3 1
D=E=0.011

and F; = sint. Choosing positive definite weighted matrices
R =0.11, Q = 0.021.

It is assumed that the upper bounds of the network delays k&
in the forward channel is not greater than 1 and the feedback
channel f; are all not greater than 2. We now apply our Algo-
rithm to this example. The maximum iteration number is chosen
to be 40, and the final value for y is 0.8818. For this value of ~,
we obtain

o= [ 0.0058 —0.0078 —0.0382]
07 [-0.0263 —0.0106 0.0335 |
P [ 0.0038 —0.0105 —0.0244 |
7 [-0.0296  0.0003  0.0262 |
K — [ 0.0001  —0.0092 —0.0203 |
>7 [ -0.0282  0.0009  0.0295 |
Ko — [—0.0020 —0.0135 —0.0260 |
7 -0.0294 0.0071  0.0464 |

—-0.1916  0.1500

L= {-0.0382 0.0442

0.1341  —0.0794

We assume the initial conditions for the three state-variables
is [0.5 0.5 0.5]. The observer state trajectories of the system
are shown in Fig. 2. Output trajectories of the system are shown
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Fig. 2. Observer states of the system in example 1.

Output

-5

0 1 2 3 4 5
Time (s)

Fig. 3. Output of the system in example 1.

in Fig. 3. It can be readily seen that the system is stable and has
a good performance.

Compared with our previous paper [17], the approach in this
brief is an improved contributed for the following three reasons.
First, the varying controller gains are easy to design while the
fixed controller gain in [17] needs to selected in advance. Sec-
ondly, the proposed approach can solve the minor guaranteed
cost bound while this bound can not be solved by employing
the method in [17]. Thirdly, by using the method in this brief, it
only takes 2 s to reach a steady-state response, while in [17] it
takes approximately 100 s to achieve.

B. Practical Experiment

Example 2: In this example, an internet-based test is used to
verify the effectiveness of the approach presented in this brief.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 5, SEPTEMBER 2010

Fig. 4. DC servo plant in the University of Glamorgan.

Fig. 5. Network controller in the Chinese Academy of Sciences.

This test rig consists of a plant (DC servo system, see Fig. 4)
which is located in the University of Glamorgan, Pontypridd,
U K., and a remote controller which is located in the Institute of
Automation, Chinese Academy of Sciences, Beijing, China (see
Fig. 5). The plant and the controller are connected via the In-
ternet, whose IP addresses are 193.63.131.219 and 159.226.20.
109, respectively. A web-based laboratory is also available at
http://www.ncslab.net/to implement experiments online.

The DC servo system is identified in [17] to be a third-order
system and is described by the following state-space system ma-
trices:

(112 0213 —0.335
A= 1 0 0
o0 1 0
(1
B= |0
0

C =1[0.0541 0.1150 0.0001].

The parameter uncertainties matrices are given by D = E =
0.017 and F; = sint, and the performance index is given by (2)
with positive definite weighted matrices R = 0.1, Q = 0.021.
The maximum network delay was measured to be 0.32 s and
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Fig. 6. Comparison between simulation and experimental results of linear net-
worked control system.

the sampling period was 0.04 s. So, the upper bound NV = 8. By
apply our Algorithm to this example, we obtain

Ko =[—0.0469 0.0007 0.0003]

Ky =[-0.0056 —0.0171 —0.0114]
Ky =[-0.0136 —0.0135 — 0.0053]
K3 =[-0.0116 —0.0123 — 0.0056]
K, =[-0.0113 —0.0111 — 0.0062]
K5 =[-0.0087 —0.0107 — 0.0075]
K =[~0.0096 — 0.0091 — 0.0070]
K7 =[-0.0076 —0.0121 — 0.0055]
Ks =[-0.0094 —0.0106 — 0.0071]

L =[5.1685 3.6030 5.3620]T

and the suboptimal guaranteed cost bound v = 19.7827.

The comparison between the simulation and experimental re-
sults is illustrated in Fig. 6, which shows that the NPC method
is valid in practice. It is seen however that there is a small error
between the simulation and experimental results. Several pos-
sible reasons may contribute to this error [15]: 1) the identified
model for the DC servo system may not be accurate enough; 2)
the dead zone of the DC servo plant has not been considered;
and 3) the measurement of the network-induced delays is not
fully accurate in practice.

V. CONCLUSION

The problem of guaranteed cost control for a class of un-
certain NCSs has been investigated in this brief. An improved
predictive controller scheme in which the controller gain varies
with the delays in both channels is presented to make the cor-
responding closed-loop system asymptotically stable for all ad-
missible uncertainties. Furthermore, a numerical algorithm in-
volving a convex optimization problem is presented to minimize
a specific cost bound for a quadratic performance index. Finally,
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anumerical simulation and a practical experiment have success-
fully demonstrated the effectiveness of the networked predictive
control scheme proposed in this brief.

APPENDIX

Proof of Theorem 1: Define the common Lyapunov functions
as

V, = XI'PX,

where P is positive definite matrix satisfying matrix inequalities

©).
Along the trajectory of system (8), for Lyapunov function

(17), we have

a7

AV =V =V
=X/; (ATPA; - P) X,
< — ;X:gh<(? + I?);X:t < 0.

Thus system (8) is asymptotically stable under arbitrary
switching.
In the following, we show that the closed-loop system satis-

fies the performance upper bound:
+oo
J = Z (xtTQ:L't + utTRut)
t=0
+oo _ _
= 3 [XT(Q + R)X, + AV, — AV}]
t=0
<V(0) = Xg PXo.
This completes the proof. - - -
Proof of Theorem 2: In view of R = ITK!RK;I, and
according to Schur complement Lemma, inequalities (9) are
equivalent to the following matrix inequalities:

-P+Q AT ITKT
* —p-1 0 < 0.
* * —R™1!
Obviously, it holds that
—P+Q A" ITKT 0 AAT 0
* —p-1 0 +]1AA 0 0]|<o0
* * —R! 0 0 0
(18)
where AA = DF(t)E.
Note that
0 AAT 0 ET )
AA 0 0| =] 0 |FT@®)o DT o]
0 0 0 0
0 _
+ | D| F(t)[E 0 0]
0
ET] 0 _
<l 0 |[E00+|D]|[0o DT (]
0 0
[ETE 0 0
= 0 DDT o (19)
|0 0 0
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Combining (18) and (19) yields (11). This completes the proof.

REFERENCES

[1] G. C. Walsh and H. Ye, “Scheduling of networked control systems,”
IEEE Control Syst. Mag., vol. 21, no. 1, pp. 57-65, Jan. 2001.

[2] W.Zhang, M. S. Branicky, and S. M. Philipsm, “Stability of networked
control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84-99,
Jan. 2001.

[3] A. V. Savkin, “Analysis and synthesis of networked control systems:
Topological entropy, observability, robustness and optimal control,”
Automatica, vol. 42, no. 1, pp. 51-62, 2006.

[4] J. Ren, C. W. Li, and D. Z. Zhao, “Linearizing control of induction
motor based on networked control systems,” Int. J. Autom. Comput.,
vol. 6, no. 2, pp. 192-197, 2009.

[5]1 Y.He, G.-P. Liu, D. Rees, and M. Wu, “Improved stabilisation method
for networked control systems,” IEE Proc.—Control Theory Appl., vol.
4, no. 6, pp. 1580-1585, 2007.

[6] Z. D. Wang, F. W. Yang, D. W. C. Ho, and X. H. Liu, “Robust H .,
control for networked systems with random packet losses,” IEEE Trans.
Syst. Man, Cybern. B, Cybern., vol. 37, no. 4, pp. 916-924, Apr. 2007.

[71 X. M. Tang and J. S. Yu, “Feedback scheduling of model-based
networked control systems with flexible workload,” Int. J. Autom.
Comput., vol. 5, no. 4, pp. 389-394, 2008.

[81 T. C. Yang, “Network control systems: A brief survey,” IEE
Proc.—Control Theory Appl., vol. 153, no. 4, pp. 403—412, 2006.

[9] J. Nilsson, Real-Time Control Systems With Delays. Lund, Sweden:
Lund Inst. Technol., 1998.

[10] D. Kim, Y. Lee, W. Kwon, and H. Park, “Maximum allowable delay
bounds of networked control systems,” Control Eng. Pract., vol. 11,
pp- 1301-1313, 2003.

[11] D. Yue, Q. L. Han, and P. Chen, “State feedback controller design of
network control systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 51, no. 11, pp. 640-644, Nov. 2004.

[12] D. Yue, Q. L. Han, and J. Lam, “Network-based robust H ., control of
systems with uncertainty,” Automatica, vol. 41, no. 6, pp. 999-1007,
2005.

[13] M. Yu, L. Wang, T. Chu, and G. M. Xie, “Stabilization of networked
control systems with data packet dropout and network delays via
switching system approach,” in Proc. 43rd IEEE Conf. Dec. Control,
Paradise Island, Bahamas, 2004, vol. 4, pp. 3539-3544.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 5, SEPTEMBER 2010

[14] G.-P. Liu, J. X. Mu, D. Rees, and S. C. Chai, “Design and stability
analysis of networked control systems with random communication
time delay using the modified MPC,” Int. J. Control, vol. 79, no. 4,
pp. 288-297, 2006.

[15] Y.-B. Zhao, G.-P. Liu, and D. Rees, “Design of a packet-based control
framework for networked control systems,” IEEE Trans. Control Syst.
Technol., vol. 17, no. 4, pp. 859-865, Jul. 2009.

[16] G.-P. Liu, Y. Xia, D. Rees, and W. Hu, “Design and stability criteria
of networked predictive control systems with random network delay in
the feedback channel,” IEEE Trans. Syst. Man, Cybern. C, Appl. Rev.,
vol. 37, no. 2, pp. 173-184, Feb. 2007.

[17] G.-P. Liu, Y. Xia, J. Chen, D. Rees, and W. Hu, “Networked predic-
tive control of systems with random network delays in both forward
and feedback channels,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp.
1282-1297, May 2007.

[18] S.S. L. Chang and T. K. C. Peng, “Adaptive guaranteed cost control
of systems with uncertain parameters,” IEEE Trans. Autom. Control.,
vol. 17, no. 4, pp. 474483, Aug. 1972.

[19] 1. R. Petersen and D. C. McFarlane, “Optimal guaranteed cost control
and filtering for uncertain linear systems,” IEEE Trans. Autom. Con-
trol., vol. 39, no. 9, pp. 1971-1977, Sep. 1994.

[20] L. Yu and J. Chu, “An LMI approach to guaranteed cost control of
linear uncertain time-delay systems,” Automatica, vol. 35, no. 6, pp.
1155-1159, 1999.

[21] B. Chen and X. P. Liu, “Fuzzy guaranteed cost control for nonlinear
systems with time-varying delay,” IEEE Trans. Fuzzy Syst., vol. 13,
no. 2, pp. 238-249, Apr. 2005.

[22] P. Shi, E.-K. Boukas, Y. Shi, and R. K. Agarwal, “Optimal guaranteed
cost control of uncertain discrete time-delay systems,” J. Comput. Appl.
Math., vol. 157, no. 2, pp. 435-451, 2003.

[23] H. G. Zhang, D. D. Yang, and T. Chai, “Guaranteed cost networked
control for T-S fuzzy systems with time delays,” IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 37, no. 2, pp. 160-172, Feb. 2007.

[24] J.H. Park and H. Y. Jung, “On the design of nonfragile guaranteed cost
controller for a class of uncertain dynamic systems with state delays,”
Appl. Math. Comput., vol. 150, no. 1, pp. 245-257, 2004.

[25] Y. B. Zhao, G.-P. Liu, and D. Rees, “A predictive control-based ap-
proach to networked hammerstein systems: Design and stability anal-
ysis,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 38, no. 3, pp.
700-708, Mar. 2008.

[26] L.EIGhaoui, F. Oustry, and M. A. Rami, “A cone complementarity lin-
earization algorithm for static output-feedback and related problems,”
IEEE Trans. Autom. Control, vol. 42, no. 8, pp. 1171-1176, Aug. 1997.



- www.engineeringvillage.com
) Detailed results: 1

Downloaded: 11/22/2017

1. Guaranteed cost control for networked control systems based on an improved predictive
control method

Accession number: 20103613211644

Authors: Wang, Rui (1, 2); Liu, Guo-Ping (1, 3); Wang, Wei (2); Rees, David (1); Zhao, Yunbo B. (1)

Author affiliation: (1) Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL, United
Kingdom; (2) Research Center of Information and Control, Dalian University of Technology, Dalian 116024, China; (3)
CTGT Center, Harbin Institute of Technology, Harbin 150001, China

Corresponding author: Wang, R.(ruiwang01@126.com)

Source title: IEEE Transactions on Control Systems Technology

Abbreviated source title: IEEE Trans Control Syst Technol

Volume: 18

Issue: 5

Issue date: September 2010

Publication year: 2010

Pages: 1226-1232

Article number: 5352229

Language: English

ISSN: 10636536

CODEN: IETTE2

Document type: Journal article (JA)

Publisher: Institute of Electrical and Electronics Engineers Inc.

Abstract: This brief deals with the problem of guaranteed cost control for a class of uncertain networked control
systems with time-varying delay. An improved predictive controller design strategy is proposed to compensate for the
delay and data dropout in both the forward and backward channels to achieve the desired control performance. The
varying controller gains which are designed to vary with delays can lead to less conservative results. Meanwhile, an
algorithm involving a convex optimization problem is presented to achieve a suboptimal guaranteed cost. Furthermore,
a numerical simulation and a practical experiment are given to illustrate the effectiveness of the proposed method. ©
2010 IEEE.

Number of references: 26

Main heading: Controllers

Controlled terms: Control systems - Convex optimization - Cost effectiveness - Costs - Linear matrix inequalities
- Networked control systems - Numerical methods - Optimization - Time delay - Time varying control systems
Uncontrolled terms: Convex optimization problems - Forward-and-backward - Guaranteed cost control -
Predictive control - Predictive control methods - Predictive controller - Switched system - Time varying- delays
Classification code: 713 Electronic Circuits - 731.1 Control Systems - 732.1 Control Equipment - 911 Cost and Value
Engineering; Industrial Economics - 911.2 Industrial Economics - 921 Mathematics

DOI: 10.1109/TCST.2009.2035611

Compendex references: YES

Database: Compendex

Compilation and indexing terms, Copyright 2017 Elsevier Inc.

Data Provider: Engineering Village

Content provided by Engineering Village. Copyright 2017 Page 1 of 1


http://www.engineeringvillage.com

