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Abstract. A packet-based control approach is proposed for networked control systems
(NCSs). This approach takes advantage of the packet-based transmission of the network
in NCSs and as a consequence the control law can be designed with explicit compensa-
tion for the network-induced delay, data packet dropout and data packet disorder in both
forward and backward channels. Under the Markov chain assumption of the network-
induced delay (data packet dropout as well), the sufficient and necessary conditions for
the stochastic stability and stabilization of the closed-loop system are obtained. A nu-
merical example illustrates the effectiveness of the proposed approach.
Keywords: Networked control systems, Communication constraints, Markov chain,
Packet-based control

1. Introduction. Networked Control Systems (NCSs) are such systems where the con-
trol loop is closed via some forms of communication network instead of connected directly
as assumed in Conventional Control Systems (CCSs) [1]. In NCSs, data is exchanged
through a communication network which inevitably introduces communication constraints
to the control systems, e.g., network-induced delay, data packet dropout, data packet
disorder, data rate constraint, etc. Despite the advantages of the remote and distribute
control that NCSs brings, the aforementioned communication constraints in NCSs present
a great challenge for conventional control theory [2, 3, 4, 5, 6, 7, 8].

The early work on NCSs has been done mainly from the control theory perspective.
Such conventional control theories as time delay system theory [9, 10, 11], stochastic
control theory [12, 13, 14, 15], switched system theory [16, 17, 18], have found their
applications to NCSs by, typically speaking, modeling the communication network as a
negative parameter (mostly a delay parameter) to the system which thus enables a CCS
instead of an NCS to be actually considered. These modeling approaches simply ignore
the latency of optimizing the system performance by taking advantage of the network
characteristics. However, the reality is that the network is not necessarily negative to
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the system. Although the communication constraints in NCSs normally degrade the
system performance, by taking advantage of the data transmission in NCSs, a better
system performance can be expected than those using aforementioned conventional control
approaches. The preliminary work using this idea, i.e., the so called “co-design” approach,
can be seen in, e.g., [19, 20, 21, 22, 23], where the characteristics of the network are
analyzed and utilized further.
Most of the work in the co-design area is motivated by the observation of the packet-

based data transmission in NCSs [1], which distinguishes NCSs from CCSs. This charac-
teristic can mean that the same amount of network resource is consumed irrespective of
whether an NCS sends one single bit or several hundreds bits of data. More specifically,
it can be concluded that the same network resource is required to send either a one step
control signal or multiple steps of forward control signals within the size limit of the data
packets used in NCSs. This observation motivates the study on the so called “packet-
based control” for NCSs in this paper, where by designing a special packet-based controller
and a corresponding comparison rule at the actuator side, this proposed approach can
explicitly compensate for the communication constraints including the network-induced
delay, data packet dropout and data packet disorder simultaneously in both forward and
backward channels. This merit can not be achieved using conventional control approaches
as in, e.g., [12, 24], where the characteristics of the network has not been specially con-
sidered and considerable conservativeness is inevitable. Furthermore, with the Markov
chain assumption on the round trip delay, the sufficient and necessary condition for the
stochastic stability and stabilization of the closed-loop system with the packet-based con-
trol approach is obtained, the effectiveness of which is then illustrated by a numerical
example.
The remainder of the paper is organized as follows. In Section 2, the problem under

consideration is presented, following which the design of the packet-based control approach
is then discussed in Section 3. For the derived closed-loop system, the stochastic stability
and stabilization results are obtained in Section 4, which is then verified by a numerical
example in Section 5. Section 6 concludes the paper.

2. Problem Statement. The NCS setup considered in this paper is shown in Figure 1,
where τsc,k and τca,k are the network-induced delays in the backward and forward channels
(called “backward channel delay” and “forward channel delay” respectively hereafter) and
the plant is linear in discrete-time which can be represented by

x(k + 1) = Ax(k) + Bu(k) (1)

with x(k) ∈ Rn, u(k) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m. The full state information is
assumed to be available for measurements and the controller to be designed.
It is necessary to point out that the forward channel delay τca,k is not available for

the controller when the control action is calculated at time k, since τca,k occurs after
the determination of the control action, see Figure 1. For this reason, when applying
conventional design techniques such as those in time delay systems to NCSs, the active
compensation for the forward channel delay can not be provided. That is, the control law
using conventional control approach to NCSs is typically obtained as

u(k) = Kx(k − τ ∗sc,k − τ ∗ca,k) (2)

where τ ∗sc,k and τ ∗ca,k are the network-induced delays of the control action that is actually
applied to the plant at time k and the feedback gain K is fixed for all network conditions.
The fact that K is fixed implies that this conventional design technique is conservative in
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Figure 1. The block diagram of a networked control system

the networked control environment, since it loses the capability of actively compensating
for the communication constraints while the system is up and running.

By recognizing this deficiency of conventional approaches to NCSs, a packet-based
control approach is therefore designed with explicit consideration of the communication
constraints in NCSs, which is presented in detail in the next section. The control law
based on this approach is obtained as follows when no time-synchronization among the
control components is available (Algorithm 3.1),

u(k) = K(τ ∗sc,k, τ
∗
ca,k)x(k − τ ∗sc,k − τ ∗ca,k) (3)

when with the time-synchronization (Algorithm 3.2), it is obtained as

u(k) = K(τ ∗k )x(k − τ ∗k ) (4)

where τ ∗k = τ ∗sc,k+τ ∗ca,k. It is noted that using the control laws in (3) and (4), the feedback
gains can be designed with explicit consideration of the communication constraints, thus
enabling us to actively compensate for the communication constraints in NCSs by applying
different feedback gains for different network conditions, as is done in Section 4. In the
following remark, we notice that other researchers have also attempted to achieve such an
advantage which however is not realizable in practice since no supportive design method
has been given.

Remark 2.1. In [12], the authors noticed the unavailability of the forward channel delay
and a controller was designed with the following form

u(k) = K(τsc,k, τca,k−1)x(k − τsc,k − τca,k) (5)

where the forward channel delay of the last step τca,k−1 was used instead. However, actually
even τca,k−1 is generally unavailable for the controller in practice since in the case of
a random forward channel delay, τca,k−1 can not be known to the controller until the
controller receives information of τca,k−1 from the actuator. Therefore, it is seen that
τca,k−1 can not be available for the controller earlier than time k − 1 + τca,k−1 even if an
additional delay-free channel exists to send the information of τca,k−1 from the actuator
to the controller. As a result, the above model in (5) is inappropriate in practice unless
a special control structure is designed for the networked control environment as in this
paper.

The comparison of the control laws between the packet-based control approach in (3)
and (4) and the conventional ones in (2) and (5) (which is not realizable in practice),
reveals the superiority of the approach proposed in this paper. To implement the control
laws in (3) and (4), the design of the packet-based control approach is then presented in
the next section in detail.
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Figure 2. Packet-based control for networked control systems

3. Packet-based Control. For the design of the packet-based control approach for
NCSs, the following assumptions are required.

Assumption 3.1. The controller and the actuator (plant) are time-synchronized and the
data packets sent from both the sensor and the controller are time-stamped.

Assumption 3.2. The sum of the maximum forward (backward) channel delay and the
maximum number of consecutive data packet dropout (disorder as well) is upper bounded
by τ̄ca (τ̄sc accordingly) and

τ̄ca ≤
Bp

Bc
− 1 (6)

where Bp is the size of the effective load of the data packet and Bc is the bits required to
encode a single step control signal.

Remark 3.1. Time-synchronization is required for the implementation of the control law
in (3), which can be relaxed for the control law in (4), see Remark 3.4. The practical
realization of time-synchronization can be approximately achieved by using the approach
in, e.g., [25], which will not be discussed in detail in this paper. With time-synchronization
among the control components and the time stamps used, the network-induced delay that
each data packet experiences can then be known by the controller and the actuator upon
its arrival.

Remark 3.2. In Assumption 3.2, the upper bound of the delay and dropout is only meant
for those received successfully; A dropped data packet is not treated as an infinite delay. In
light of the UDP (User Datagram Protocol) that is widely used in NCSs, this upper bound
assumption is thus reasonable in practice as well as necessary in theory. Furthermore,
the constraint in (6) is easy to be satisfied, e.g., Bp = 368 bit for Ethernet IEEE 802.3
frame which is often used [26], while an 8-bit data (i.e., Bc = 8 bit) can encode 28 = 256
different control actions which is ample for most control implementations; In this case, 45
steps of forward channel delay is allowed by (6) which can actually meet the requirements
of most practical control systems.

The block diagram of the packet-based control structure is illustrated in Figure 2. It
is distinct from the conventional control structure in two respects: the specially designed
packet-based controller and the corresponding Control Action Selector (CAS) at the ac-
tuator side.
In order to implement the control laws in (3) and (4), we take advantage of the packet-

based transmission of the network to design a packet-based controller instead of trying to
obtain directly the current forward channel delay as this is actually impossible in practice.
As for the control law in (3), the packet-based controller determines a sequence of forward
control actions as follows and sends them together in one data packet to the actuator,

U1(k|k − τsc,k) = [u(k|k − τsc,k) . . . u(k + τ̄ca|k − τsc,k)]
T (7)
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where u(k+ i|k− τsc,k), i = 0, 1, . . . , τca,k are the forward control action predictions based
on information up to time k − τsc,k.

When a data packet arrives at the actuator, the designed CAS compares its time stamp
with the one already in CAS and only the one with the latest time stamp is saved. Denote
the forward control sequence already in CAS and the one just arrived by U1(k1−τca,k1 |k1−
τk1) and U1(k2 − τca,k2 |k2 − τk2) respectively, then the chosen sequence is determined by
the following comparison rule,

U1(k − τ ∗ca,k|k − τ ∗k ) =

{
U1(k2 − τca,k2|k2 − τk2), if k1 − τk1 < k2 − τk2 ;

U1(k1 − τca,k1|k1 − τk1), otherwise.
(8)

The comparison process is introduced because different data packets may experience
different delays thus producing a situation where a packet sent earlier may arrive at the
actuator later, that is, data packet disorder. After the comparison process, only the latest
available information is used.

CAS also determines the appropriate control action from the forward control sequence
U1(k − τ ∗ca,k|k − τ ∗k ) at each time instant as follows:

u(k) = u
(
k|k − τ ∗sc,k − τ ∗ca,k

)
(9)

It is necessary to point out that the appropriate control action determined by (9) is
always available provided Assumption 3.2 holds and (9) is equivalent to the control law
in (3) if state feedback is used, i.e.,

u(k) = u
(
k|k − τ ∗sc,k − τ ∗ca,k

)
= K

(
τ ∗sc,k, τ

∗
ca,k

)
x
(
k − τ ∗sc,k − τ ∗ca,k

)
(10)

The packet-based control algorithm with the control law in (3) can now be summarized
as follows based on Assumptions 3.1 and 3.2.

Algorithm 3.1. Packet-based control with the control law in (3)

S1. At time k, if the packet-based controller receives the delayed state data x(k − τsc,k),
then, it

S1a. Reads current backward channel delay τsc,k;
S1b. Calculates the forward control sequence as in (7);
S1c. Packs U1(k|k − τsc,k) and sends it to the actuator in one data packet with time

stamps k and τsc,k.
If no data packet is received at time k, then let k = k + 1 and wait for the next

time instant.
S2. CAS updates its forward control sequence by (8) once a data packet arrives;
S3. The control action in (10) is picked out from CAS and applied to the plant.

In practice, it is often the case that we do not need to identify separately the forward
and backward channel delays since it is normally the round trip delay that affects the
system performance. In such a case, the simpler control law in (4) instead of that in (3)
is applied, for which the following assumption is required instead of Assumption 3.2.

Assumption 3.3. The sum of the maximum network-induced delay and the maximum
number of continuous data packet dropout in the round trip is upper bounded by τ̄ and

τ̄ ≤ Bp

Bc
− 1 (11)

With the above assumption, the packet-based controller is modified as follows:

U2(k|k − τsc,k) = [u(k − τsc,k|k − τsc,k) . . . u(k − τsc,k + τ̄ |k − τsc,k)]
T (12)

It is noticed that in such a case the backward channel delay τsc,k is not required for
the controller, since the controller simply produces (τ̄ + 1) step forward control actions
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whenever a data packet containing sensing data arrives. This relaxation implies that the
time-synchronization between the controller and the actuator (plant) is not required and
thus Assumption 3.1 can then be modified as follows.

Assumption 3.4. The data packets sent from the sensor are time-stamped.
The comparison rule in (8) and the determination of the actual control action in (10)

remain unchanged since both of them are based on the round trip delay τk and in this
case the control law with state feedback is obtained as follows, as presented in (4),

u(k) = u(k|k − τ ∗k ) = K(τ ∗k )x(k − τ ∗k ) (13)

The packet-based control algorithm with the control law in (4) can now be summarized
as follows based on Assumptions 3.3 and 3.4.

Algorithm 3.2. Packet-based control with the control law in (4)

S1. At time k, if the packet-based controller receives the delayed state data x(k − τsc,k),
then,

S1a. Calculates the forward control sequence as in (12);
S1b. Packs U2(k|k − τsc,k) and sends it to the actuator in one data packet.

If no data packet is received at time k, then let k = k + 1 and wait for the next
time instant.

S2 and S3. remain the same as in Algorithm 3.1.

Remark 3.3. From the design procedure of the packet-based control approach, it is seen
that the implementation of this approach requires only: 1) a modified controller to produce
the sequences of the forward control signals in (7) or (12) and 2) the so designed CAS
at the actuator side to compensate for the communication constraints. In practice, the
latter could be a separate control component added to the system, and the packet-based
controller can be designed using any appropriate methods that can give rise to a good
system performance. Therefore, this approach can be readily implemented in practice.
Furthermore, the fact that conventional control design methods can still be fitted in the
packet-based control framework also makes the proposed approach a universal solution to
NCSs.

4. Stochastic Modeling and Stabilization. It is noticed that the control law in (3)
equals that in (4) if K(τ ∗k ) = K(τ ∗sc,k, τ

∗
ca,k) which is generally true in practice. Thus, for

simplicity only the closed-loop system with the control law in (4) (i.e., Algorithm 3.2) is
analyzed in this paper.
Let X(k) =

[
xT (k) xT (k − 1) · · · xT (k − τ̄)

]T
, then the closed-loop system with the

control law in (4) can be written as

X(k + 1) = Ξ(τ ∗k )X(k) (14)

where Ξ(τ ∗k ) =

⎛

⎜⎜⎜⎜⎝

A · · · BK(τ ∗k ) · · · · · ·
In 0

In 0
. . .

...
In 0

⎞

⎟⎟⎟⎟⎠
and In is the identity matrix with rank

n.

4.1. The stochastic model of the packet-based control approach for NCSs.
In NCSs, it is reasonable to model the round trip delay {τk; k = 0, 1, . . .} as a ho-
mogeneous ergodic Markov chain [12]. Here in order to take explicit account of the
data packet dropout, Markov chain {τk; k = 0, 1, . . .} is assumed to take values from



STOCHASTIC STABILIZATION OF PBNCSS 2447

M = {0, 1, 2, . . . , τ̄ ,∞} where τk = 0 means no delay in round trip while τk = ∞ implies
a data packet dropout in either the backward or the forward channel. Let the transition
probability matrix of {τk; k = 0, 1, . . .} be denoted by Λ = [λij] where

λij = P{τk+1 = j|τk = i}, i, j ∈ M

P{τk+1 = j|τk = i} is the probability of τk jumping from state i to j, λij ≥ 0 and
∑

j∈M

λij = 1, ∀i, j ∈ M

The initial distribution of {τk; k = 0, 1, . . .} is defined by

P{τ0 = i} = pi, i ∈ M

According to the comparison rule in (8), the round trip delay of the control actions
that are actually applied to the plant can be determined by the following equation.

τ ∗k+1 =

{
τ ∗k + 1, if τk+1 > τ ∗k ;

τ ∗k − r, if τ ∗k − r = τk+1 ≤ τ ∗k .
(15)

Remark 4.1. The data packet dropout is explicitly considered by including the state
τk = ∞ into the state space Λ; The data packet disorder is also considered by (15):
In our stochastic model the network-induced delay, data packet dropout and data packet
disorder are all considered simultaneously. To the best knowledge of the authors, there is
no analogous analysis available in the literature to date.

Lemma 4.1. {τ ∗k ; k = 0, 1, . . .} is a non-homogeneous Markov chain with state space
M∗ = {0, 1, 2, . . . , τ̄} whose transition probability matrix Λ∗(k) = [λ∗

ij(k)] is defined by

λ∗
ij(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
l1∈M,l1≥i

πl1
(k)λl1j

∑
l1∈M,l1≥i

πl1
(k) , j ≤ i;

∑
l1∈M,l1≥i

∑
l2∈M,l2>i

πl1
(k)λl1l2

∑
l1∈M,l1≥i

πl1
(k) , j = i+ 1;

0, otherwise.

(16)

where πj(k) =
∑
i∈M

piλ
(k)
ij and λ(k)

ij is the k-step transition probability of τk from state i to

j.

Proof: The comparison rule in (15) implies that the probability event {τ ∗k = i} ∈
σ(τk, τk−1, . . . , τ1, τ0). Thus, it is readily concluded that τ ∗k is also a Markov chain since τk
as a Markov chain evolves independently. It is obvious that τ ∗k can not be ∞ and thus its
state space is M∗ = {0, 1, 2, . . . , τ̄}. Furthermore, noticing {τ ∗k = i} = {τ ∗k−1 = i− 1, τk >
i− 1} ∪ {τ ∗k−1 ≥ i, τk = i} we have

1. If j ≤ i, then

P{τ ∗k+1 = j|τ ∗k = i} = P{τk+1 = j|τ ∗k = i}
= P{τk+1 = j|τk ≥ i}

=

∑
l1∈M,l1≥i

πl1(k)λl1j

∑
l1∈M,l1≥i

πl1(k)
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2. If j = i+ 1, then

P{τ ∗k+1 = j|τ ∗k = i} = P{τk+1 > i|τ ∗k = i}
= P{τk+1 > i|τk ≥ i}

=

∑
l1∈M,l1≥i

∑
l2∈M,l2>i

πl1(k)λl1l2

∑
l1∈M,l1≥i

πl1(k)

which completes the proof.
The following well-known result for homogeneous ergodic Markov chains [27] is required

for the stochastic stability analysis in this paper.

Lemma 4.2. For the homogeneous ergodic Markov chain {τk; k = 0, 1, . . .} with any
initial distribution, there exists a limit probability distribution π = {πi; πi > 0, i ∈ M}
such that for each j ∈ M,

∑

i∈M

λijπi = πj,
∑

i∈M

πi = 1 (17)

and
|πi(k)− πi| ≤ ηξk (18)

for some η ≥ 0 and 0 < ξ < 1.

Proposition 4.1. For N1 that is large enough and some nonzero η∗ the following inequal-
ity holds

|λ∗
ij(k)− λ∗

ij| ≤ η∗ξk, k > N1 (19)

where Λ∗ = [λ∗
ij] with

λ∗
ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
l1∈M,l1≥i

πl1
λl1j

∑
l1∈M,l1≥i

πl1
, if j ≤ i;

∑
l1∈M,l1≥i

∑
l2∈M,l2>i

πl1
λl1l2

∑
l1∈M,l1≥i

πl1
, if j = i+ 1;

0, otherwise .

(20)

Proof: It can be readily obtained from (16), (18) and (20).

4.2. Stochastic stability and stabilization. The following definition of stochastic sta-
bility is used in this paper.

Definition 4.1. The closed-loop system in (14) is said to be stochastically stable if for
every finite X0 = X(0) and initial state τ ∗0 = τ ∗(0) ∈ M, there exists a finite W > 0 such
that the following inequality holds,

E

{ ∞∑

k=0

||X(k)||2|X0, τ
∗
0

}
< XT

0 WX0 (21)

where E{X} is the expectation of the random variable X.

Theorem 4.1. The closed-loop system in (14) is stochastically stable if and only if there
exists P (i) > 0, i ∈ M∗ such that the following (τ̄ + 1) LMIs hold

L(i) =
∑

j∈M∗

λ∗
ijΞ

T (j)P (j)Ξ(j)− P (i) < 0, ∀i ∈ M∗ (22)
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Proof: Sufficiency. For the closed-loop system in (14), consider the following quadratic
function given by

V (X(k), k) = XT (k)P (τ ∗k )X(k) (23)

We have

E{∆V (X(k), k)} = E
{
XT (k + 1)P (τ ∗k+1)X(k + 1)|X(k), τ ∗k = i

}
−XT (k)P (i)X(k)

=
∑

j∈M∗

λ∗
ij(k + 1)XT (k)ΞT (j)P (j)Ξ(j)X(k)−XT (k)P (i)X(k)

= XT (k)

[
∑

j∈M∗

λ∗
ij(k + 1)ΞT (j)P (j)Ξ(j)− P (i)

]
X(k)

From condition (22) we obtain

XT (k)

[
∑

j∈M∗

λ∗
ijΞ

T (j)P (j)Ξ(j)− P (i)

]
X(k) ≤ −λmin(−L(i))XT (k)X(k) ≤ −β||X(k)||2

where β = inf{λmin(−L(i)); i ∈ M∗} > 0. Thus, for k > N1,

E{∆V (X(k), k)} = XT (k)

[
∑

j∈M∗

λ∗
ij(k + 1)ΞT (j)P (j)Ξ(j)− P (i)

]
X(k)

≤ XT (k)

[
∑

j∈M∗

λ∗
ijΞ

T (j)P (j)Ξ(j)− P (i)

]
X(k)

+XT (k)
∑

j∈M∗

|λ∗
ij(k + 1)− λ∗

ij|ΞT (j)P (j)Ξ(j)X(k)

≤ −β||X(k)||2 + η∗ξk+1XT (k)
∑

j∈M∗

ΞT (j)P (j)Ξ(j)X(k)

≤
(
αη∗ξk+1 − β

)
||X(k)||2

where α = sup{λmax(ΞT (j)P (j)Ξ(j)); j ∈ M∗} > 0. Let N2 = inf{M ;M ∈ N+,M >
max{N1, logξ

β
αη∗ − 1}}. Then, we have for k ≥ N2.

E{∆V (X(k), k)} ≤ −β∗||X(k)||2 (24)

where β∗ = β − αη∗ξN2+1 > 0. Summing from N2 to N > N2, we obtain

E

{
N∑

k=N2

||X(k)||2
}

≤ 1

β∗ (E{V (X(N2), N2)}− E{V (X(N + 1), N + 1)})

≤ 1

β∗E{V (X(N2), N2)}

which implies that

E

{ ∞∑

k=0

||X(k)||2
}

≤ 1

β∗E{V (X(N2), N2)}+ E

{
N2−1∑

k=0

||X(k)||2
}

(25)

This proves the stochastic stability of the closed-loop system in (14) by Definition 4.1.
Necessity. Suppose the closed-loop system in (14) is stochastically stable, that is,

E

{ ∞∑

k=0

||X(k)||2|X0, τ
∗
0

}
< XT

0 WX0 (26)
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Define

XT (n)P̄ (N − n, τ ∗n)X(n) = E

{
N∑

k=n

XT (k)Q(τ ∗k )X(k)|Xn, τ
∗
n

}
(27)

with Q(τ ∗k ) > 0. It is noticed that XT (n)P̄ (N − n, τ ∗n)X(n) is upper bounded from (26)
and monotonically non-decreasing as N increases since Q(τ ∗k ) > 0. Therefore, its limit
exists which is denoted by

XT (n)P (i)X(n) = lim
N→∞

XT (n)P̄ (N − n, τ ∗n = i)X(n) (28)

Since (28) is valid for any X(n), we obtain

P (i) = lim
N→∞

P̄ (N − n, τ ∗n = i) > 0 (29)

Now, consider

E
{
XT (n)P̄ (N − n, τ ∗n)X(n)−XT (n+ 1)P̄ (N − n− 1, τ ∗n+1)X(n+ 1)|Xn, τ

∗
n = i

}

= XT (n)

[
P̄ (N − n, i)−

∑

j∈M∗

λ∗
ij(n+ 1)ΞT (j)P̄ (N − n− 1, j)Ξ(j)

]
X(n)

= XT (n)Q(i)X(n) (30)

Since (30) is valid for any X(n), we obtain

P̄ (N − n, i)−
∑

j∈M∗

λ∗
ij(n+ 1)ΞT (j)P̄ (N − n− 1, j)Ξ(j)) = Q(i) > 0 (31)

Let N → ∞,

P (i)−
∑

j∈M∗

λ∗
ij(n+ 1)ΞT (j)P (j)Ξ(j) > 0, ∀n

Let n → ∞,

P (i)−
∑

j∈M∗

λ∗
ijΞ

T (j)P (i)Ξ(j) > 0

which completes the proof.
The result below readily follows using the Schur complement.

Corollary 4.1. System (1) is stochastically stabilizable using the packet-based control
approach with the control law in (4) if and only if there exist P (i) > 0, Z(i) > 0, K(i),
i ∈ M∗ such that the following (τ̄ + 1) LMIs hold

(
P (i) R(i)
RT (i) Q

)
> 0, i ∈ M∗ (32)

with the equation constraints

P (i)Z(i) = I, ∀i ∈ M∗ (33)

where R(i) =
[
(λ∗

i0)
1
2ΞT (0) . . . (λ∗

iτ̄ )
1
2ΞT (τ̄)

]
, Q = diag{Z(0) . . . Z(τ̄)} and Ξ(i) (conse-

quently K(i)) is defined in (14).

The LMIs in Corollary 4.1 with the matrix inverse constraints in (33) can be solved
using the Cone Complementarity Linearization (CCL) algorithm [28].
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5. Illustrative Example. A numerical example is considered in this section to illustrate
the effectiveness of the propose approach in this paper.

Example 5.1. Consider the system in (1) with the following system matrices borrowed
from [12],

A =

⎛

⎜⎜⎝

1.0000 0.1000 −0.0166 −0.0005
0 1.0000 −0.3374 −0.0166
0 0 1.0996 0.1033
0 0 2.0247 1.0996

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

0.0045
0.0896
−0.0068
−0.1377

⎞

⎟⎟⎠ .

This system is open-loop unstable with the eigenvalues at 1, 1, 1.5569 and 0.6423,
respectively. In the simulation, the random round trip delay is upper bounded by 4, i.e.,
τk ∈ M = {0, 1, 2, 3, 4,∞}, with the following transition probability matrix,

Λ =

⎛

⎜⎜⎜⎜⎜⎝

0.1 0.2 0.2 0.3 0.2 0
0.2 0.2 0.2 0.2 0.1 0.1
0.24 0.06 0.48 0.12 0.1 0
0.15 0.25 0.3 0.15 0.1 0.05
0.3 0.3 0.2 0.1 0.1 0
0.3 0.3 0.15 0.15 0.1 0

⎞

⎟⎟⎟⎟⎟⎠
.

The limit distribution of the above ergodic Markov chain can be simply obtained by
Lemma 4.2,

π =
(
0.1982 0.1814 0.3000 0.1738 0.1198 0.0268

)
.

Λ∗ in Proposition 4.1 can then be calculated by (20) as

Λ∗ =

⎛

⎜⎜⎜⎜⎝

0.1982 0.8018 0 0 0
0.2224 0.1767 0.6008 0 0
0.2290 0.1699 0.3612 0.2398 0
0.2186 0.2729 0.2501 0.1313 0.1271
0.3000 0.3000 0.1909 0.1091 0.1000

⎞

⎟⎟⎟⎟⎠
.

The comparison between the practical delays τk and those after the comparison process
using the packet-based control approach τ ∗k is illustrated in Figure 3 where 5 on the vertical
axis represents a data packet dropout. From Figure 3, it is seen that data packet dropout
has been effectively dealt with using the packet-based control approach, by noticing that
τ ∗k ∈ M∗ = {0, 1, 2, 3, 4}.

From Corollary 4.1, the packet-based controller is obtained as follows, where it is seen
that for different network conditions, different feedback gains are designed,

K(0) =
(
0.5292 0.6489 22.4115 2.8205

)
,

K(1) =
(
0.3792 0.8912 20.2425 5.3681

)
,

K(2) =
(
0.0499 0.4266 15.6574 5.7322

)
,

K(3) =
(
−0.4400 −0.3003 9.2976 5.0540

)
,

K(4) =
(
−0.8400 −1.3422 2.7723 2.9173

)
.

Using the packet-based control approach with the above packet-based controller, the state
trajectories of the closed-loop system is illustrated in Figure 4 with the initial states
x(−3) = x(−2) = x(−1) = x(0) = [0 0.1 0 − 0.1]T , which demonstrates the stochas-
tic stability of the closed-loop system.

However, without the packet-based control strategy, even using the same controller de-
sign method without considering the different network conditions (that is, using K(i) ≡
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Figure 3. Comparison of the practical delays τk and those after the com-
parison process τ ∗k where 5 on the vertical axis represents a data packet
dropout
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Figure 4. The system is stable using the packet-based control approach

K(0), i ∈ M, i.e., K(0) fixed for all network conditions), the system is shown to be
unstable under the same simulation conditions, see Figure 5. Furthermore, consider the
conventional control approach proposed in [29] where no packet-based control structure
was considered and the feedback gain was designed as K = [0.9844 1.6630 25.9053 6.1679]
fixed for all network conditions, the system is also shown to be unstable under the same
simulation conditions, see Figure 6. These comparisons proves the effectiveness of the
proposed packet-based control approach and the stabilized controller design method.

6. Conclusion. By taking advantage of the packet-based data transmission in NCSs,
a packet-based control approach is proposed for NCSs, which can be used to deal with
the communication constraints in NCSs including network-induced delay, data packet
dropout and data packet disorder simultaneously. To the best of the authors’ knowledge,
this benefit has not been achieved using conventional control approaches to NCSs. The
novel model obtained based on this approach offers the designers the freedom of designing
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Figure 5. The system is unstable without the packet-based control strat-
egy, using K(0) fixed for all network conditions
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Figure 6. The system is unstable using conventional control approach
with a fixed feedback gain

different controllers for different network conditions, which is realizable compared with
the previous model in [12] where no supportive design method was considered and yet a
similar model was used (Remark 2.1). The stochastic stabilization result is then obtained
by modeling the communication constraints as a homogeneous ergodic Markov chain and
then the closed-loop system as a Markov jump system. This result is based on a better
understanding of the packet-based data transmission in the stochastic fashion and enabled
the proposed packet-based control approach to be applied in practice. Within this packet-
based control framework, future research will focus on nonlinear NCSs and experimental
verification of the proposed approach.
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