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Abstract The input-to-state stability problem of a class of nonlinear switched net-
worked control systems subject to time-varying transmission intervals, periodical
packet dropouts, and communication constraints is investigated. By adopting the
extended input-to-state stability(eISS) protocol and constructing a novel Lyapunov
function, the input-to-state stability properties of such systems are discussed. Then,
by making use of the small-gain theorem, the maximum allowable transmission in-
terval to guarantee system stability is obtained. A batch reactor is finally considered
to demonstrate the effectiveness of the proposed method.
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1 Introduction

Networked control systems (NCSs) are control systems where the control links are
completed via communication networks. Despite the advantages of introducing com-
munication networks into control systems, we have to deal with the imperfect data
exchanges in NCSs before such systems can be widely deployed in practice [2, 5,
7, 13, 20, 22–24]. On the other hand, switched systems are a special type of hybrid
dynamical systems which consist of finite subsystems and their dynamic behaviour
is determined by a switching rule amongst the subsystems [8–10, 14, 18, 19]. The
switching behaviour comes from either the controller design or the inherent system
characteristics; examples can be seen in communication networks, computer synchro-
nisation, traffic control, and so on [21, 25]. It is widely noticed that NCSs exhibit high
switching behaviours and thus the design and analysis of NCSs within the switched
system framework are highly desirable.

The effects of the imperfect data changes in NCSs can be roughly categorised as
[1, 3]: (i) Quantisation errors; (ii) Packet dropouts; (iii) Variable sampling/ transmis-
sion intervals; (iv) Variable communication delays; (v) Communication constraints,
i.e. not all sensor and actuator signals can be transmitted at the same time. With a
nonlinear switched plant, the considered system in the present work is modelled as a
nonlinear switched NCS which has not been addressed before. We are interested in
the input-to-state stability (ISS) property [4] for the nonlinear switched NCS with the
aforementioned network effects of categories (ii), (iii) and (v). Although this com-
bination of the network effects has been considered before in [12], the conditions
obtained there are difficult to verify in the case of packet dropout. In this work for the
case of packet dropout, adopting the extended input-to-state stability(eISS) protocols
in [15], we present a simple method to obtain the maximum allowable transmission
interval (MATI). In our model, packet dropouts may take place periodically which
is described by a periodical time sequence. What is more, in the considered hybrid
systems the impulsive signals can have arbitrary jumps which is much more general
than in the existing results [11].

The remainder of the paper is organised as follows. In Sect. 2, the considered
model and the quoted protocol are given. The ISS for the hybrid system and the
small-gain theorem for nonlinear NCSs are given in Sect. 3. In Sect. 4, a numerical
example, batch reactor, is discussed. The conclusions are drawn in the last section.

Notations R and N denote the sets of the real numbers and nonnegative integers,
respectively. R≥0 ! [0,∞), and N+ ! N/{0}. |x| is the Euclid norm of x ∈ Rm

and Id is the identity function with dimension d . ∀t ≥ 0,0 ≤ t1 ≤ t2, ∥x[t1, t2]∥ :=
supt1≤t≤t2

|x(t)|. For a matrix A ∈ Rn×n, |A| is the induced matrix norm. A function
α : R≥0 → R≥0 is said to be of class K-function if it is continuous, zero at zero,
and strictly increasing. It is a class K∞-function if it is a class K-function and un-
bounded. A function β : R≥0 × R≥0 → R+ is a class K L-function if β(·, t) is a class
K-function for each t ≥ 0 and β(s, ·) is decreasing to zero for each s ≥ 0. β is said
to be a class of exp-K L-function if there exist two positive constants M , λ such that
β(s, t) = Me−λt s.
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2 The Model of NCSs and eISS Protocols

2.1 The Nonlinear Switched NCSs

In order to consider the systems in this paper, a monotonically increasing sequence of
times tι, ι ∈ N is given, where t0 = 0, and limι→+∞ tι = +∞. Moreover, we assume
that there exist ε and δι such that

(A0): 0 < ε ≤ tι − tι−1 ≤ δι ≤ δ

which rules out the possibility of Zeno solutions.
Consider the following general switched plant without any network effects:

ẋ(t) = f̃σ (t)(t, x, u,ω), (1)

where x ∈ Rnx , u ∈ Rnu and ω ∈ Rnω are the system state, system input, and the
disturbance input, respectively; σ (t) : R≥0 → {1,2, . . . , n} is the switching signal;
f̃p : R≥0 × Rnx × Rnu × Rnω → R, p ∈ {1,2, . . . , n} are smooth functions.

The match controller is

u(t) = kσ (t)(t, x,ω), (2)

where kp : R≥0 × Rnx × Rnω → R, p ∈ {1,2, . . . , n} are smooth functions such that
the switched system (1) with its controller (2) is stable. Under the effect of network,
the state x is usually not directly available for the controller and thus the controller is
given as

u(t) = kσ (t)(t, x̂,ω), (3)

where x̂ is the vector of most recently transmitted system state via the network. We
assume that the vector can be divided into l parts, 1 ≤ l ≤ nx , enumerated from 1 to l,
and the ith sub-vector is referred as the ith node. At each transmission time tι, one
of the nodes i ∈ {1,2, . . . , l} is granted the access to the network, and thus, x̂i (tι) =
xi(tι). Here we assume that x̂ is held constant between the transmission instants by
using zero-order hold. We rewrite system (1) and (3) and obtain the general switched
nonlinear NCSs of the following form:

ẋ(t) = f̃σ (t)

(
t, x, kσ (t)(t, x̂,ω),ω

)
∀t ∈ [tι−1, tι),

˙̂x(t) = 0 ∀t ∈ [tι−1, tι),

x̂(tι) = x
(
t−ι

)
+ h

(
t−ι , e

)
,

(4)

where e ! x̂ − x is the network-induced error. The function h is typical for time-
scheduling protocols [12] and has the following form:

h
(
t−ι , e

)
=

(
I − Ψ (s)

)
e
(
t−ι

)
, (5)
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where s = s(i, e) : N × Rn → {1,2, . . . , l} is some scheduling function

Ψ (s) := diag{δ1s In1, . . . , δls Inl }, (6)

where δij is the standard Kronecker delta and Inj is the identity matrix of dimension
nj , with

∑l
j=1 nj = ne. Based on x̂i (tι) = xi(tι), ei(tι) = 0 holds at time tι.

Rewriting the system (1), (3) and (5) in the (x, e) coordinates, we obtain the fol-
lowing NCSs model:

ẋ(t) = fσ (t)(t, x, e,ω), t ∈ [tι−1, tι), (7)

ė(t) = gσ (t)(t, x, e,ω), t ∈ [tι−1, tι), (8)

e(tι) = h
(
t−ι , e

)
, (9)

where

fσ (t)(t, x, e,ω) = f̃σ (t)

(
t, x, kσ (t)(t, x + e,ω),ω

)
,

gσ (t)(t, x, e,ω) = −fσ (t)(t, x, e,ω)

and x ∈ Rnx , e ∈ Rne and ω ∈ Rnω are the state, the network-induced error and
the disturbance input, respectively; σ (t) : R≥0 → {1,2, . . . , q} is the switching sig-
nal; fp : R≥0 × Rnx × Rne × Rnω → R , gp : R≥0 × Rnx × Rne × Rnω → R,
p ∈ {1,2, . . . , n} and fp and gp are smooth functions. Here the bound δ in (A0)
is the so-called MATI. With assumption (A0), for the solution to the above system,
please refer to [12]. Also the following assumption is made:

Assumption 1 The considered system only switches at transmission times.

We use the following definition for subsystem (7).

Definition 1 [16] The subsystem (7) is said to be ISS from e and ω to x, if there exist
a class K L-function β and class K-functions γxe and γxω such that, for any initial
state x0 and any measurable, locally essentially bounded input e and disturbance
input ω, the solution exists for all t ≥ 0 and

∣∣x(t)
∣∣ ≤ β(|x0|, t) + γxe

(∥∥e[0, t]
∥∥)

+ γxω

(∥∥ω[0, t]
∥∥)

. (10)

If the system is ISS with linear functions γxe and γxω and an exp-K L-function
β(·, ·), then we say that the system is ISS with linear gains and an exp-K L-function.

2.2 The eISS Protocol

Unlike the general case of random packet dropouts considered in [12], we consider
a special case where the packet dropouts occur periodically. Each period contains
m + n updating time instants, including two classes: the first m instants being trans-
mitted without packet dropouts and the remaining n instants with packet dropouts.
This periodical sequence is described by replacing {tι} with {tkι } where t1

0 = t0,
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ι ∈ {1,2, . . . ,m+ n}, and k ∈ N+ is the number of the period. Let x(tkm+n) ! x(tk+1
0 )

and denote the left limit of x(tkι ) by x(tk−
ι ) such that the periodical time sequence sat-

isfies (A0). Inspired by the ISS protocols [16], with packet dropouts and disturbance
input, we rewrite (5) as

h
(
tk−
ι , e, θ

)
=

(
I − Ψ (s)

)
e
(
tk−
ι

)
+ Ψ (s)θ

(
tk−
ι

)
(11)

where θ(tkι ) := θ(tkι , x,ω), and θ : N × Rnx × Rnω → Rne .
Replacing protocol (9) by (11), we have the following system:

ẋ(t) = fσ (t)(t, x, e,ω), t ∈
[
tkι−1, t

k
ι

)
, (12)

ė(t) = gσ (t)(t, x, e,ω), t ∈
[
tkι−1, t

k
ι

)
, (13)

e
(
tkι

)
= h

(
tk−
ι , e, θ

)
, (14)

where fσ (t)(t, x, e,ω) and gσ (t)(t, x, e,ω) are defined above, and the parameters x,
e, ω and σ (t) are the same as in the system (7)–(9).

Definition 2 [15] Suppose that there exist a Lyapunov function W(t, e) : R≥0 ×
Rne → R≥0 and positive constants ρ1 < 1,ρ2 ≥ 1, α1,α2,G1,G2,G3,G4, such that
the following conditions hold for system (14) at each transmission time tkι for all
e ∈ Rne , x ∈ Rnx ,ω ∈ Rnω

α1|e| ≤ W(t, e) ≤ α2|e|, (15)

W
(
tkι , h

(
tk−
ι , e, θ

))
≤ ρ1W

(
tk−
ι , e

)
+ G3

∣∣x
(
tk−
ι

)∣∣ + G1
∣∣ω

(
tk−
ι

)∣∣,

0 < ι ≤ m, (16)

W
(
tkι , h

(
tk−
ι , e, θ

))
≤ ρ2W

(
tk−
ι , e

)
+ G4

∣∣x
(
tk−
ι

)∣∣ + G2
∣∣ω

(
tk−
ι

)∣∣,

m < ι ≤ m + n. (17)

Then protocol (14) is said to be eISS with Lyapunov function W(t, e).

Remark 1 The eISS protocol is equivalent to the ISS protocol in [16] if n = 0 and
equivalent to the UGES protocol in [12] if Gi = 0, i = {1,2,3,4}. Since the distur-
bance ω is involved in (16)–(17), this eISS protocol is more relaxed than the one
considered in [12].

Consider the following non-switched system to demonstrate the concept of eISS:

ẋ = A11x + A12e + A13ω, (18)

ė = A21x + A22e + A23ω, (19)

e
(
tkι

)
= h

(
tk−
ι , e, x,ω

)
. (20)

Example 1 der the try-once-discard (TOD) protocol [17]. In the TOD protocol, the
scheduling function takes the following form:

s = s(e) = min
{

arg max
i

|ei |
}
. (21)
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The ith node has the greatest weighted error value and it will be granted access to
the network at the time tki . Let the Lyapunov function be W(t, e) = |e|, then we have
α1 = α2 = 1. With the quantisation factor or the disturbance factor at the transmission

time, (16) holds with some G1,G3 ≥ 0, where ρ1 =
√

l−1
l [12]. At times due to

the effect of packet dropouts, (17) may hold with ρ2 ≥ 1 and G2,G4 ≥ 0 at some
transmission time points. Thus the TOD protocol with some effect of packet dropouts
is eISS with Lyapunov function W(t, e) = |e|.

Example 2 Consider the RR protocol, a static protocol [12, 17] where each node is
granted access to the network in a given order without comparing the weighted value
of each node. Let the Lyapunov function be

W(t, e) =

√√√√√
l∑

j=1

a2
j (ι)|ej |2,

where aj (ι) are time varying coefficients and for any ι ∈ N and any j ∈ {1,2, . . . , l}
there exists a unique d ∈ {1,2, . . . , l} such that a2

j (ι) = d . We have α1 = 1,α2 =
√

l.

Also, (16) holds with some G1,G3 ≥ 0, where ρ1 =
√

l−1
l [12]. Due to the effect

of packet dropout, (17) may hold with ρ2 ≥ 1 and G2,G4 ≥ 0 at some transmission
time points. Thus the RR protocol with some effect of packet dropouts is eISS with
the Lyapunov function given above.

3 Stability Analysis

In this section, we consider the stability analysis problem of switched nonlinear NCSs
(12)–(14), starting from the ISS property of the network-induced error system (13)–
(14).

Lemma 1 Suppose there exist a piecewise Lyapunov function v(t, e) : R≥0 × Rne →
R≥0, class K functions α1,α2,χ1,χ2 and positive numbers ρ1 < 1,ρ2 ≥ 1,µ such
that for e ∈ Rne and θ(tkι ) := θ(tkι , x,ω) ∈ Rne , θ̄(t) ! (xT ,ωT )T ∈ Rnx+nω

1. α1(|e|) ≤ v(t, e) ≤ α2(|e|); (22)

2.

{
v(tkι , h(tk−

ι , e, θ)) ≤ ρ1v(tk−
ι , e) + χ2(|θ(tk−

ι )|) 0 < ι ≤ m;
v(tkι , h(tk−

ι , e, θ)) ≤ ρ2v(tk−
ι , e) + χ2(|θ(tk−

ι )|) m < ι ≤ m + n;
(23)

3. D+v(t, e) ≤ µv(t, e) + χ1
(∣∣θ̄(t)

∣∣) ∀t ∈
[
tkι−1, t

k
ι

)
; (24)

4. ρ = ρ1ρ
n
2 Mn+1 ≤ 1, (25)
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where D+v(t, e) denotes the right-hand derivative, ρ = ρ1M(ρ2M)n, M = eµδ , and
γ0 = 1

µ(M − 1). Then the following inequality holds for any t ∈ [tkι−1, t
k
ι ),0 < ι ≤ m:

v(t, e) ≤ ρk−1(ρ1M)ιMv(t0, e0) + ρ

1 − ρ

m−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+
k−1∑

s=1

ρk−s
m−1∑

l=1

(ρ1M)m−1−lMχ2
(∣∣θ

(
t s−l

)∣∣)

+ 1
1 − ρ

n∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+
k−1∑

s=0

ρk−1−s
n∑

j=0

(ρ2M)jMχ2
(∣∣θ

(
t s−m+n−j

)∣∣)

+
ι−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

ι−1∑

l=1

(ρ1M)ι−1−lMχ2
(∣∣θ

(
tk−
l

)∣∣) (26)

and the following inequality holds for any t ∈ [tkι−1, t
k
ι ),m < ι ≤ m + n:

v(t, e) ≤ ρk−1(ρ2M)ι−m−1(ρ1M)mMv(t0, e0)

+ (ρ2M)ι−m−1 ρ

1 − ρ

m−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)ι−m−1
k−1∑

s=1

ρk−s
m−1∑

l=1

(ρ1M)m−1−lMχ2
(∣∣θ

(
t s−l

)∣∣)

+ (ρ2M)ι−m−1 1
1 − ρ

n∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)ι−m−1
k−1∑

s=0

ρk−1−s
n∑

j=0

(ρ2M)jMχ2
(∣∣θ

(
t s−m+n−j

)∣∣)

+ (ρ2M)ι−m−1
ι−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)ι−m−1
ι−1∑

l=1

(ρ1M)ι−1−lMχ2
(∣∣θ

(
tk−
l

)∣∣)

+
ι−m−1∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

ι−m−1∑

j=1

(ρ2M)jMχ2
(∣∣θ

(
tk−
ι−j

)∣∣). (27)

Proof See the Appendix. "
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Proposition 1 Under the conditions of Lemma 1, system (13)–(14) is uniformly ISS
with gain

γ = α−1
1 ◦ (I + ε) ◦

([

ρ

m−1∑

l=0

(ρ1M)l +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
γ0χ1

+
[

ρ

m−1∑

l=1

(ρ1M)m−1−l +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
Mχ2

)

, (28)

where ε is a class K-function.

Proof See the Appendix. "

For linear systems (18)–(20), the following inequality where µ ≥ 0, χx,χω ≥ 0,
instead of (24), can be readily established:

D+W(t, e) ≤ µW(t, e) + χx |x| + χω|ω|. (29)

For linear system (18)–(20), we will have the following proposition based on
Proposition 1.

Proposition 2 Given the Lyapunov function W(tkι , e), suppose the following condi-
tions hold:

1. The protocol (20) is eISS with Lyapunov function W(tkι , e);
2. Along the error dynamics (19) for all t , x, ω and almost all e, (29) holds;
3. MATI satisfies δ ∈ (ε, T ∗), where T ∗ = 1

µ(n+1) ln 1
ρn

2 ρ1
.

Then the ISS property holds for system (19)–(20), that is, for t ∈ [tkι−1, t
k
ι ), ι ∈

{1,2, . . . ,m + n}, k ∈ N+,
∣∣e(t)

∣∣ ≤ β
(
|e0|, t − t0

)
+ γex

∥∥x[t0, t]
∥∥ + γeω

∥∥ω[t0, t]
∥∥, (30)

where

β
(
|e0|, t − t0

)
= α2

α1
ρ−k(m+n)Me

t−t0
δ lnρ |e0|

γex = α−1
1

{[

ρ

m−1∑

j=0

(ρ1M)j +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
γ0χx

+
[

ρ

m−1∑

j=1

(ρ1M)m−1−j +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
MG

}

γeω = α−1
1

{[

ρ

m−1∑

j=0

(ρ1M)j +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
γ0χω

+
[

ρ

m−1∑

j=1

(ρ1M)m−1−j +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
MG

}

,
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ρ = ρ1M(ρ2M)n,M = eµδ,γ0 = 1
µ(M − 1),G = max{G1,G2,G3,G4} and Gi, i ∈

{1,2,3,4}, α1, α2, ρ1 and ρ2 are defined in Definition 2.

Proof It can be readily obtained from Lemma 1 and Proposition 1. "

Example 3 For the TOD protocol, consider the Lyapunov function W(t, e) = |e|.
From Example 1, Condition 1 in Proposition 2 holds with α1 = α2 = 1, ρ1 =

√
l−1
l ,

ρ2 ≥ 1 and χ2 = max{Gi}, i = {1,2,3,4}. Based on the analysis of [12], we have µ =
1
2λmax(A

T
22 + A22), χx = |A21| and χω = |A23|. Thus Condition 2 in Proposition 2

holds. Therefore, if Condition 3 holds, then the system (19)–(20) is ISS with γex and
γeω defined in Proposition 2.

Example 4 Let the Lyapunov function for the RR protocol be

W(t, e) =

√√√√√
l∑

j=1

a2
j (ι)|ej |2.

We have α1 = 1, α2 =
√

l, ρ1 =
√

l−1
l , ρ2 ≥ 1 and χ2 = max{Gi}, i = {1,2,3,4}.

Then Condition 1 in Proposition 2 holds. Similarly, µ =
√

l|A22| and χx =
√

l|A21|,
χω =

√
l|A23|, and Condition 2 in Proposition 2 holds. If Condition 3 holds, then the

system (19)–(20) is ISS with γex and γeω defined in Proposition 2.

Theorem 1 For the system (12)–(14), suppose the following conditions hold:

1. Subsystem (14) satisfies the following:
∣∣x(t)

∣∣ ≤ βx

(
|x0|, t − t0

)
+ γxe

∥∥e[t0, t]
∥∥ + γxω

∥∥ω[t0, t]
∥∥, (31)

where γxe ≥ 0,γxω ≥ 0;
2. Conditions 1–3 in Proposition 2 hold;
3. There exists a MATI δ such that γxe ×γex < 1, where γxe is defined in Definition 1

and γex is equal to γ in Proposition 1.

Then the whole system (12)–(14) is ISS from the input signal ω with MATI δ.

Remark 2 This theorem is similar to the main results in [12]. The proof of this the-
orem follows readily from Theorem 2.1 in [6]. The gain γex in Condition 2 can be
easily obtained in the same way as in Lemma 1 and Proposition 1. It is pointed out
that linear gains γxe and γxω in (27) are not necessary, which can be relaxed by two
class K functions.

For the non-switched system considered in [12],

ẋ(t) = f (t, x, e), (32)

ė(t) = g(t, x, e), (33)

e
(
tkι

)
= h

(
tk−
ι , e

)
, (34)
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where protocol (34) has the form of (11), and f and g are defined in system (12)–(13),
we have the following corollary.

Corollary 1 For the system (32)–(34), suppose the following conditions hold:

1. Subsystem (32) is ISS from e to x with gain γxe , where γxe ≥ 0;
2. All the conditions in Lemma 1 hold, and subsystem (33)–(34) is ISS from x to e

with gain γex , where γex has the same form as γ in Proposition 1;
3. There exists MATI δ such that γxe × γex < 1.

Then the whole system (32)–(34) is UGES.

Remark 3 The following procedure is used to obtain the MATI.

(i) Calculate the ISS gain γxe from e to x with the parameters in subsystem (12);
(ii) Calculate T ∗ with the parameters in subsystem (13)–(14) and Condition 3 in

Proposition 2 such that subsystem (13)–(14) is ISS from x to e;
(iii) Check Condition 3 in Theorem 1;
(iv) If it does not hold, use a new bound T = T ∗ − η, with 0 < η < T ∗ to calculate

the ISS gain γex from x to e. Then go to (iii);
(v) If Condition 3 in Theorem 1 holds, let the MATI δ = T .

4 Numerical Example: The Batch Reactor

Consider the batch reactor reported in [12, 17]. The linearised model of the unstable
batch reactor is of the following form in the presence of the communication network:

ẋ(t) = A11x(t) + A12e(t), ∀t ∈
[
tkι−1, t

k
ι

)
, (35)

ė(t) = A21x(t) + A22e(t), ∀t ∈
[
tkι−1, t

k
ι

)
, (36)

e
(
tkι

)
= h

(
tk−
ι , e

)
, (37)

where

A11 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.38 −0.2077 6.7150 −5.6760 0 0
−0.5814 −15.6480 0 0.6750 −11.3580 0
−14.6630 2.0010 −22.3840 21.6230 −2.2720 −25.1680

0.048 2.0010 1.3430 −2.1040 −2.2720 0
0 1.0000 0 0 0 0

1.0000 0 1.0000 −1.0000 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
;

A12 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0
0 −11.3580

−15.7300 −2.2720
0 −2.2720
0 1.0000

1.0000 0

⎞

⎟⎟⎟⎟⎟⎟⎠
;
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A21 =
(

13.3310 0.2077 17.0120 −18.0510 0 25.1680
0.5814 15.6480 0 −0.6750 11.3580 0

)
;

A22 =
(

15.7300 0
0 11.3580

)
.

Only the plant outputs are sent over the network in the above system. For (35), the
gain from e to x is γxe = 17.7653.

Considering the eISS protocol and with the TOD form [17], let the Lyapunov

function be v(t, e) = |e|. Then we have µ = 15.73, ρ1 =
√

l−1
l , where l = 2 is the

number of the nodes. Then we choose ρ2 = 1 and m = n = 1 which means that packet
dropout occurs once after two adjacent samples.

With Condition 3 in Proposition 2, it is obtained that T ∗ = 0.011 s. Then with
Condition 3 in Theorem 1, we have δ = 0.00017 s, and the gain from x to e is γex =
0.056. Then the whole system is UGES.

With the analysis in Example 2, let the Lyapunov function be

v(t, e) =

√√√√√
l∑

j=1

a2
j (ι)|ej |2.

Similarly, we have that µ = 15.73, ρ1 = 0.707. Then we choose ρ2 = 1.1 and m =
n = 1. Ignoring the term of ω in Proposition 2, we obtain that T ∗ = 0.008 s. Then
with Theorem 1, we have δ = 0.000079 s, and the gain from x to e is γex = 0.056.
The whole system is UGES.

MATI that ensures the UGES of the system is calculated. Figure 1 shows the trade-
off curve between the MATI and the ratio of the number of normal transmission m

and the number of corresponding packet dropouts n in a period. When m : n = 99 : 1,
MATI is 0.000701 s and 0.000497 s for the TOD protocol and the RR protocol, re-

Fig. 1 Tradeoff curves for TOD
and RR protocols

Author's personal copy



Circuits Syst Signal Process

Fig. 2 The state responses of the batch process. The first diagram shows the response to follow
(y1y2) = (10), the second is with TOD protocol and packet dropouts, and the third is with RR proto-
col and packet dropouts

spectively. The TOD protocol outperforms the RR protocol in the sense that the for-
mer allows larger transmission intervals. The step response of the batch reactor is
illustrated in Fig. 2. It is shown that the system is stable under the conditions given in
this paper, which validates the proposed approach.

5 Conclusions

A class of switched nonlinear NCSs with periodical packet dropouts, variable sam-
pling intervals and communication constraints is investigated. With a novel piecewise
Lyapunov function, the ISS properties for this model with protocols containing peri-
odical packet dropouts are discussed. The small gain theorem is used to give the ISS
conditions for the NCSs. Finally, the effectiveness of the proposed method is illus-
trated by a batch reactor example. Future research will focus on the use of multiple-
Lyapunov method which is usually less conservative than the common Lyapunov
function method used in the present work.

Appendix

Proof of Lemma 1 We use mathematical induction to prove (26) and (27). Consid-
ering Conditions 2–3, we can derive the following inequalities with the Lyapunov
function v(t, e) and we use v(t) to denote v(t, e) for ellipsis. For t ∈ [tkι , tkι+1), we
obtain that

v(t) ≤ Mv
(
tkι

)
+ γ0χ1

(∥∥θ̄ [t0, t
)∥∥)

. (38)

It holds for 0 < ι ≤ m that

v
(
tkι+1

)
≤ ρ1v

(
tk−
ι+1

)
+ χ2

(∣∣θ
(
tk−
ι+1

)∣∣). (39)

Author's personal copy



Circuits Syst Signal Process

Inequalities (38) and (39) then imply

v
(
tkι+1

)
≤ ρ1

[
Mv

(
tkι

)
+ γ0χ1

(∥∥θ̄ [t0, t)
∥∥)]

+ χ2
(∣∣θ

(
tk−
ι+1

)∣∣)

≤ ρ1Mv
(
tki

)
+ ρ1γ0χ1

(∥∥θ̄ [t0, t)
∥∥)

+ +χ2
(∣∣θ

(
tk−
ι+1

)∣∣). (40)

For m < ι ≤ m + n it holds that

v
(
tkι+1

)
≤ ρ2v

(
tk−
ι+1

)
+ χ2

(∣∣θ
(
tk−
ι+1

)∣∣) (41)

and

v
(
tkι+1

)
≤ ρ2

[
Mv

(
tkι

)
+ γ0χ1

(∥∥θ̄ [t0, t)
∥∥)]

+ χ2
(∣∣θ

(
tk−
ι+1

)∣∣)

≤ ρ2Mv
(
tkι

)
+ ρ2γ0χ1

(∥∥θ̄ [t0, t)
∥∥)

+ χ2
(∣∣θ

(
tk−
ι+1

)∣∣). (42)

For t ∈ [t1
0 , t1

1 ),

v(t) ≤ Mv(t0) + γ0χ1
(∥∥θ̄ [t0, t)

∥∥)
(43)

and

v
(
t1
1
)
≤ ρ1Mv(t0) + ρ1γ0χ1

(∥∥θ̄ [t0, t)
∥∥)

+ χ2
(∣∣θ

(
t1−
1

)∣∣). (44)

Then for any 1 < ι ≤ m,k = 1, we have that

v(t) ≤ M(ρ1M)ι−1v(t0) +
ι−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+
ι−1∑

l=1

(ρ1M)ι−1−lMχ2
(∣∣θ

(
t1−
l

)∣∣). (45)

For t ∈ [t1
m, t1

m+1),

v(t) ≤ M(ρ1M)mv(t0) +
m∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+
m∑

l=1

(ρ1M)m−lMχ2
(∣∣θ

(
t1−
l

)∣∣). (46)

With Condition 2, we obtain that

v
(
t1
m+1

)
≤ ρ2M(ρ1M)mv(t0) + ρ2

m∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ ρ2

m∑

l=1

(ρ1M)m−lMχ2
(∣∣θ

(
t1−
l

)∣∣) + χ2
(∣∣θ

(
t1−
m+1

)∣∣). (47)
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For ∀t ∈ [t1
ι , t1

ι+1),m < ι ≤ m + n, it holds that

v(t) ≤ M(ρ2M)ι−m(ρ1M)mv(t0) + (ρ2M)ι−m−1
m∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)ι−m−1
m∑

l=1

(ρ1M)m−lMχ2
(∣∣θ

(
t1−
l

)∣∣)

+
ι−m−1∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

ι−m−1∑

j=1

(ρ2M)jMχ2
(∣∣θ

(
t1−
ι−j

)∣∣). (48)

Then

v
(
t2
0
)
= v

(
t1
m+n

)

≤ (ρ2M)n(ρ1M)mv(t0) + ρ2(ρ2M)n−1
m∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ ρ2(ρ2M)n−1
m∑

l=1

(ρ1M)m−lMχ2
(∣∣θ

(
t1−
l

)∣∣)

+ ρ2

n−1∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

n−1∑

j=0

(ρ2M)jMχ2
(∣∣θ

(
t1−
m+n−j

)∣∣). (49)

For ∀t ∈ [t2
0 , t2

1 ),

v(t) ≤ (ρ2M)n(ρ1M)mMv(t0) + (ρ2M)n(ρ1M)

m−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)n(ρ1M)

m−1∑

l=1

(ρ1M)m−1−lMχ2
(∣∣θ

(
t1−
l

)∣∣)

+
n∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

n∑

j=0

(ρ2M)jMχ2
(∣∣θ

(
t1−
m+n−j

)∣∣). (50)

With the definition ρ = (ρ2M)nρ1M and ρ1M < 1, using mathematical induction,
∀k ∈ N+ and 0 < ι ≤ m, it holds that

v(t) ≤ ρk−1(ρ1M)ιMv(t0) + ρ

1 − ρ

m−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+
k−1∑

s=1

ρk−s
m−1∑

l=1

(ρ1M)m−1−lMχ2
(∣∣θ

(
t s−l

)∣∣)

+ 1
1 − ρ

n∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
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+
k−1∑

s=0

ρk−1−s
n∑

j=0

(ρ2M)jMχ2
(∣∣θ

(
t s−m+n−j

)∣∣)

+
ι−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

ι−1∑

l=1

(ρ1M)ι−1−lMχ2
(∣∣θ

(
tk−
l

)∣∣). (51)

Then, ∀k ∈ N+ and m < ι ≤ m + n,

v(t) ≤ ρk−1(ρ2M)ι−m−1(ρ1M)mMv(t0)

+ (ρ2M)ι−m−1 ρ

1 − ρ

m−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)ι−m−1
k−1∑

s=1

ρk−s
m−1∑

l=1

(ρ1M)m−1−lMχ2
(∣∣θ

(
t s−l

)∣∣)

+ (ρ2M)ι−m−1 1
1 − ρ

n∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄[t0, t)

∥∥)

+ (ρ2M)ι−m−1
k−1∑

s=0

ρk−1−s
n∑

j=0

(ρ2M)jMχ2
(∣∣θ

(
t s−m+n−j

)∣∣)

+ (ρ2M)ι−m−1
i−1∑

l=0

(ρ1M)lγ0χ1
(∥∥θ̄ [t0, t)

∥∥)

+ (ρ2M)ι−m−1
i−1∑

l=1

(ρ1M)ι−1−lMχ2
(∣∣θ

(
tk−
l

)∣∣)

+
ι−m−1∑

j=0

(ρ2M)jγ0χ1
(∥∥θ̄ [t0, t)

∥∥)
+

ι−m−1∑

j=1

(ρ2M)jMχ2
(∣∣θ

(
tk−
ι−j

)∣∣), (52)

where M = eµδ , γ0 = 1
µ(M − 1). "

Proof of Proposition 1 With (A0), ∀t ∈ [tkι−1, t
k
ι ), k ∈ N+ and 0 < ι ≤ m+n we have

that t − t0 ≤ (k+1)(m+n)δ. Then with ρ < 1, ρk+1 ≤ ρ
t−t0

δ(m+n) = e
t−t0

δ(m+n) lnρ . Suppose
that |θ(tι)| ≤ ∥θ̄ [t0, t)∥, then with (51) and (52) the following inequality holds:

v(t) ≤ e
t−t0

δ(m+n) lnρ
v(t0) +

[

ρ

m−1∑

l=0

(ρ1M)l +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
γ0χ1

(∥∥θ̄ [t0, t)
∥∥)

+
[

ρ

m−1∑

l=1

(ρ1M)m−1−l +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
Mχ2

(∥∥θ̄ [t0, t)
∥∥)

. (53)
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Recalling Condition 1, we obtain

∣∣e(t)
∣∣ ≤ α−1

1 ◦
(
I + ε−1) ◦ e

t−t0
δ(m+n) lnρ

v(t0)

+ α−1
1 ◦ (I + ε) ◦

([

ρ

m−1∑

l=0

(ρ1M)l +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
γ0χ1

(∥∥θ̄ [t0, t)
∥∥)

+
[

ρ

m−1∑

l=1

(ρ1M)m−1−l +
n∑

j=0

(ρ2M)j

]
1

1 − ρ
Mχ2

(∥∥θ̄ [t0, t)
∥∥)

. (54)

"
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