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Abstract: The stability of a class of switched stochastic nonlinear retarded systems with asynchronous 

switching controller is investigated. By constructing a virtual switching signal and using the average 

dwell time approach incorporated with Razumikhin-type theorem, the sufficient criteria for pth mo-

ment exponential stability and global asymptotic stability in probability are given. It is shown that the 

stability of the asynchronous stochastic systems can be guaranteed provided that the average dwell 

time is sufficiently large and the mismatched time between the controller and the systems is sufficient-

ly small. This result is then applied to a class of switched stochastic nonlinear delay systems where the 

controller is designed with both state and switching delays. A numerical example illustrates the effec-

tiveness of the obtained results. 
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1. INTRODUCTION 

 

Switched systems are a special class of hybrid systems, 

in the sense that the former is described by a family of 

finite subsystems whose active modes are governed by a 

switching rule. Switched systems are reasonable models 

for various practical systems, such as networked control 

systems, communication systems, flight control, etc. [1-

3]. One is usually interested in the stability, control-

lability, robustness, passivity, optimal control, sliding 

mode control, etc., of such systems [4-14], among which 

the stability is the most concerned and a number of tools, 

e.g., multiple Lyapunov functions, average dwell time 

approach, have been proposed from various perspectives 

[11,15-17]. On the other hand, time delays are often seen 

in practical engineering systems, which can be a severe 

factor that deteriorates the system performance. A large 

volume of studies can be seen from the literature [18-20]; 

some are undertaken within the switched system 

framework [21-27]. 

Two types of controllers, the mode-dependent and the 

mode-independent, are seen for switched systems. It is 

believed that the mode-dependent controller is less con-

servative as it takes advantage of more information of the 

system. The mode-dependent controller is often assumed 

to be ideally synchronous with the switching of systems 

[25] which, however, may not be true in reality due to 

the presence of time delays. Specifically, on the one hand, 

time-delay often appears in switched systems either in 

input control or in output measurements. The former is 

mainly due to actuator dynamics, the calculation of the 

control gains, the communication delay between the 

controller and the actuator, etc. while the latter can be 

caused by the communication delay between the sensor 

and the controller, etc. In some cases delay can indirectly 

be induced by a phase lag in filtering out the noise from 

the measurements. On the other hand, in the practical 

implementation, due to unknown abrupt phenomena such 

as component and interconnection failures, detecting the 

switching rules also takes time. Those thus present a 

great challenge at the boundary of switched systems and 

time delay systems. Then the so-called asynchronous 

switching is proposed, and a number of efforts have been 

made, for example, the admissible delay of asynchronous 

switching are given in [28,29]; state feedback stabili-

zation, input-to-state stabilization and output feedback 

stabilization are studied in [30-36]; results have also 

been reported for Markov jump linear systems [37-39], 

just to name a few.  

Switched stochastic systems have recently been pop-

ular due to the significant role played by the stochastic 

modelling in many branches of engineering disciplines. 

Consequently, the study of control synthesis for such sy-

stems with asynchronous switching, e.g., robust stabil-

ization, H
∞
 filtering, have been widely seen [40-43]. 
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Using the boundedness assumption of nonlinear term, a 

linear matrix inequality (LMI) approach incorporated wi-

th Lyapunov method is developed to meet the goal. In 

another line switched stochastic retarded systems have 

received much attention in recent years. Such systems 

consist of a set of stochastic retarded subsystems that are 

described by stochastic functional differential equations. 

Works in related areas can be found in, for example, [44] 

for the pth moment input-to-state stability of stochastic 

nonlinear retarded systems under Markovian switching, 

[24] for the stability under average dwell time switching 

signal, and so forth. Despite all these results, to date 

switched stochastic nonlinear retarded systems under as-

ynchronous switching have received little attention, whi-

ch motivates this study for us. 

In this paper, we investigate the stability of a class of 

switched stochastic nonlinear retarded systems under 

asynchronous switching. The main challenge for a mode 

dependent controller design is to deal with the mis-

matched period due to the existence of detection delays. 

Our efforts are made towards the stability criteria for 

such systems with respect to the mismatched interval. 

For a more realistic situation, we consider the controller 

with both state and switching delays. To describe and 

deal with the asynchronous switching phenomenon, a 

virtual switching signal is constructed and applied. Fin-

ally, a sufficient Razumikhin-type stability criterion is 

derived to guarantee the stability of the closed-loop sys-

tem under average dwell time approach. 

The remainder of the paper is organized as follows. 

The problem is formulated and necessary definitions are 

given in Section 2. The main results are then discussed in 

Section 3, with an application given in Section 4. Section 

5 concludes the paper. 

Notions: 
+

!  and 
+

"  denote the set of positive 

integer and nonnegative real numbers, respectively. Let 

{0}.
+

∪=! !  If x and y are real numbers, then x y∧  

denotes the minimum of x and y. For vector ,

n

x∈! | |x  

denotes the Euclidean norm. Let τ≥ 0 and ([ ,0]; )
n

C τ− !  

denote the family of all continuous 
n

! -valued functions 

φ on [–τ, 0] with the norm || || {| ( ) |:supϕ ϕ θ τ θ= − ≤  

.0}≤  Let 
0

([ ,0]; )
b n

C τ− !F  be the family of all 
0
-F  

measurable bounded ([ ,0]; )-
n

C τ− ! valued random vari-

ables { ( ) : 0}.ξ ξ θ τ θ= − ≤ ≤  For t≥ 0, let ([ ,0];
t

p

L τ−

F
 

)
n

!  denote the family of all -

t
F measurable ([ ,C τ−  

0]; )-
n

! valued random variables { ( ) :φ φ θ τ θ= − ≤ ≤ 0} 

such that 
0

sup {| ( ) | }

p

τ θ

φ θ
− ≤ ≤

E .< ∞  The transpose of 

vectors and matrices is denoted by superscript T. C
i

 

denotes all the ith continuous differential functions; C
i,k

 

denotes all the functions with ith continuously differenti-

able first component and kth continuously differentiable 

second component. Finally, the composition of two 

functions : A Bα →  and : B Cβ →  is denoted by 

: .A Cα β →!  

 

2. PRELIMINARIES 

 

Consider the following switched stochastic nonlinear 

retarded systems 

( ) ( )
( , , , ( )) g ( , , , ( )) ,

t t t t
dx f t x x u t dt t x x u t dw

σ σ

= +  (1) 

where ( )
n

x x t= ∈!  is the state vector, { ( ) :
t
x x t θ= +  

0}τ θ− ≤ ≤  is ([ ,0]; )-
n

C τ− ! valued random process, 

( )
l

u t
∞

∈L  is the control input. 
l

∞

L  denotes denotes the 

set of all the measurable and locally essentially bounded 

input ( )
l

u t ∈!  on 
0

[ , )t ∞  with the norm 

0

0

[ , )

, ( ) 0
[ , )

|| ( ) || sup inf sup{ ( , ) : \ }
t

s t

u s u w s w
∞

∈Ω =
∈ ∞

= ∈Ω

PA A
A

 (2) 

w(t) is the m-dimensional Brownian motion defined on 

the complete probability space 
0

,{ } ,( , ),
t t t≥

Ω PF F  with 

Ω being a sample space, F  being a σ -field, 
0

{ }
t t t≥

F  

being a filtration and P  being a probability measure. 

0
: [ , )tσ ∞ → S (S  is the index set, and may be infinite) 

is the switching law and is right hand continuous and 

piecewise constant on t. σ(t) discussed in this paper is 

time dependent, and the corresponding switching times 

are 
1 2

.
l

t t t< < < <! !  The i
l 
th subsystems will be 

activated at time interval 
1

[ , ).
l l
t t

+

 Specially, when 

0
t t= (t

0
 is the initial time), suppose 

0 0 0
( )t iσ σ= = ∈  

.S  For all ,i∈S : ([ ,0]; )

n n l

i
f C τ

+

× × − × →! ! ! !  

n

!  and : ([ ,0]; )

n n l n m

i
g C τ

×

+

× × − × →! ! ! ! !  are 

continuous with respect to t, x, u, and satisfy uniformly 

locally Lipschitz condition with respect to x, u, and 

( ,0,0,0) 0,
i
f t ≡ ( ,0,0,0) 0.

i
g t ≡  

In practice, instantaneous switching signal detection is 

impossible. In this paper, we are concerned the stability 

of systems under the following mode-dependent state fe-

edback law: 
'( )

( ) ( , ),
t t

u t h t x
σ

=  on 
0

t t≥  with initial 

data 
0

0 0
{ ( ) : 0} ([ ,0]; )

b n

x x t Cθ τ θ ξ τ= + − ≤ ≤ = ∈ − !F  

and 
0 0 0 0

( ) ( ) .r r t r t iθ= + = =  '( ) ( ( ))t t d t
σ

σ σ= −  is 

utilized to denote the practical switching signal of 

controller, where 0 ( ) .d t d
σ

≤ ≤  Further, we assume 

that, the detected switching signal σ'(t) is causal, i.e., the 

ordering of the switching times of σ'(t) is the same as the 

ordering of the corresponding switching times of σ(t). 

Further, we also assume that 
1

inf { },
l l l

d t t
∈ +

≤ −!  which 

guarantees that there always exists a period in which the 

controller and the system operate synchronously. This 

period is called matched period. Let 
'

1
{ }
l l
t

≥
 denotes the 

switching times of σ'(t), 
'

( )
( ),

l
l l t l
t t d t

σ

= +  then 
'

'( )

l
tσ =  

( ) ,
l l
t iσ =  and 

' '

1 1 2 2
t t t t< < <

'

1
.

l l l
t t t

+

< < < < <! !  

We assume 
'

0 0
.t t=  

Due to the existence of the detection delay, there exist-

s a period in 
1

[ , )
l l
t t

+

 such that the mode-dependent fee-

dback control input u(t) and the 
l
i th subsystem operate 

asynchronously. We call the time interval 
'

[ , )
l l
t t  the 

mismatched period, and 
'

1
[ , )
l l
t t

+

 the matched period. 

For convenience, let 
'

1
( , ) [ , ),

a l l l l
T t t t t

+

=

'

1
( , ) [ ,

s l l l

T t t t
+

=  

1
).

l
t
+

 For any
0

s t≥ , let ( )
a

T t s−  denote the total time 

of the mismatched time interval on [ , ].s t  Then, for any 

,l
+

∈!  we have 
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1

1 1

1 1 1 2

1

1 1 2

1

1 1

1 1

( , )

( ) ( , )

( ) ( , )

( ) ( , )

( )

 

( ) ( , )

( ) ( , ),

l a l l

a l l s l l

a l l l a l l

l

a i i s l l

i l

a l

n

a i i n a n n

i l

n

a i i s n n

i l

t t t T t t

T t t t T t t

T t t t t t T t t

T t t t T t t

T t t

T t t t t t T t t

T t t t T t t

+

+ +

+ + + +

+

+ + +

=

−

+ +

=

+ +

=

− ∈⎧

⎪
− ∈

⎪

⎪ − + − ∈

⎪

⎪
− ∈

⎪
⎪

− = ⎨

⎪

⎪

− + − ∈⎪

⎪

⎪

− ∈

⎩

∑

∑

∑

! !

⎪

⎪

 

where 
1

( )
a l l

T t t
+

−  is the length of the 
1

( , ).
a l l

T t t
+

 

For each i∈S , :

n l

i
h

+

× →! ! !  is a smooth fun-

ction. Then, the closed-loop system can be transformed 

into the following retarded-type systems 

( ) ( )
( , , ) ( , , ) ,

t t t t
dx f t x x dt g t x x dw

σ σ

= +  (3) 

where 
( ) ( ) '( )
( , , ) ( , , , ( , )),

t t t t t t
f t x x f t x x h t x
σ σ σ

=  
( )
( ,

t
g t
σ

 

( ) '( )
, ) ( , , , ( , )).

t t t t t
x x g t x x h t x

σ σ

=  ( )tσ  is a virtual swit-

ching signal from 
0

[ , )t ∞  to ×S S  with ( ) ( ( ),t tσ σ=  

'( ))tσ  and switching times 
0

{ }
l l
t

≥ 0 0
( ).t t=  Clearly, 

we have 
2 1l l
t t

−
=  and 

'

2
,

l l
t t=  for any 1.l ≥  Assume 

that the composite functions f  and g  are sufficiently 

smooth, such that system (3) has an unique solution on 

0
.t t τ≥ −  

The following definitions are needed for the stability 

of closed-loop system (3). 

Definition 1: The equilibrium ( ) 0x t =  of system (3) 

is globally asymptotically stable in probability (GASiP), 

if for any 0,ε >  there exists a class KL  function β 

such that 
0 0

{| | ( {|| ||}, )} 1 , .x t t t tβ ξ ε< − ≥ − ∀ ≥P E  

Remark 1: Class ,K ,

∞

K KL  functions are defined 

in [45]. And in the sequel, class 
∞

CK  and 
∞

VK  

function are the two subsets of class 
∞

K
 
functions that 

are convex and concave, respectively. 

Definition 2: The equilibrium ( ) 0x t =  of system (3) 

is pth moment exponentially stable, if there exists a class 

KL  function β (where ( , )tβ ⋅  will converge to zero by 

the way of exponential decay as ),t →∞  such that  

0 0
{| | } ( {|| || }, ), .

p p

x t t t tβ ξ< − ∀ ≥E E  (4) 

Definition 3 [15]: For any given constants τ
*

0>  and 

N
0
, let ( , )N t s

σ

 denote the switch number of ( )tσ  in 

[ , ),s t  for any 
0
,t s t> ≥  and let  

0 0 0
{ ( ) : ( , ) , [ ,] )}[ *, .

t s

N t s N s t tS N
σ

σ

τ

τ

∗

−

⋅ ≤ + ∀ ∈=  

Then τ
*

 is called the average dwell-time of 
*

0
[ , ],S Nτ  

and 

0 0 0

sup sup

( , )
t t t s t

t s

N t s N

σ

σ

τ

≥ > ≥

−

−

!  is called the average 

dwell-time of ( ).σ ⋅  

Lemma 1 [23]: If 
0

( ,) ][ ,S Nσ τ

∗

⋅ ∈  then ( )σ ′ ⋅ ∈  

0
[ , ]

d

S Nτ

τ

∗

∗

+  and 
0

( ) [ , 2 .]

2

d

S N

τ

σ

τ

∗

∗

⋅ ∈ +  

Definition 4 [18]:  For any given 
2,1

(
n

V C
+

∈ ×! !  

; ),
+

× × !S S  define a diffusion operator associated with 

system (3), ,VL  from ([ ,0]; )
n

C τ
+

− × × ×! ! S S  to 

,!  by 

( )

2

( ) ( )
2

( , , ( ))

( , , ( )) ( , , ( ))

( , , )

1 ( , , ( ))

[ ( , , ) ( , , )],

2

t

t t

T

t t t t

V x t t

V x t t V x t t

f t x x

t x

V x t t

trace g t x x g t x x

x

σ

σ σ

σ

σ σ

σ

∂ ∂

= +

∂ ∂

∂

+

∂

L

 (5) 

where ( , , ( )) ( , , ( ( .), ))V t t V t t tσ σ σ ′⋅ ⋅!  

In what follows let 
( )
( , )

t
V t
σ

⋅  denote ( , , .( ))V t tσ⋅  

 

3. MAIN RESULTS 

 

Based on the average dwell-time approach, we give th-

e sufficient criteria for GASiP and pth moment exponen-

tial stability for a class of switched stochastic nonlinear 

retarded systems. We first consider the stability of ordin-

ary switched systems under asynchronous switching and 

then the case with retarded-type state-feedback delay. 

Let x
t
 = x(t) in (3), then, it can be transformed into 

( ) ( )
d ( , )d ,( , )d

t t
x f t x t g t x w

σ σ

= +  (6) 

where 
( ) ( ) ( )
( , ) ( , , ( , ) ,)

t t t
f t x f t x h t x
σ σ σ ′

!
( )
( , )

t
g t x
σ

!  

( ) ( )
( , , ( , )).

t t
g t x h t x
σ σ ′

 Similarly, for any 
2,1

(
n

V C∈ ×!  

; ),
+ +

× ×! !S S  we can define the infinitesimal operat-

or L from 
n

+

× × ×! ! S S  to ,!  associated with sy-

stem (6), by 

( ) ( )

( ) ( )

2

( )

( ) ( )
2

( , ) ( , )

( , ) ( , )

( , )1

[ ( , ) ( , )].

2

t t

t t

tT

t t

V x t V x t

LV x t f t x

t x

V x t

trace g t x g t x

x

σ σ

σ σ

σ

σ σ

∂ ∂

= +

∂ ∂

∂

+ ×

∂

 

Then, for closed-loop switched system (6), we have 

the following result. 

Lemma 2: If there exist functions 
1
,α

2
,α

∞

∈K  

class C
2,1

 Lyapunov function 
( )
( , )

t
V x t
σ

 and some 

positive constants λ
s
, λ

a
 and µ≥ 1, such that 

1 ( ) 2
(| |) ( , ) (| |);

t
x V x t x

σ

α α≤ ≤  (7) 

and for any ,l∈!  

( ) 1

( )

( ) 1

( , ), ( , ),

( , )

( , ), ( , ),

s t s l l

t

a t a l l

V x t t T t t

LV x t

V x t t T t t

σ

σ

σ

λ

λ

+

+

− ∈⎧⎪
≤ ⎨

∈⎪⎩

 (8) 

hold almost surely. For any ,r
+

∈!  
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1
( ) ( )

{ ( ( ), )} { ( ( ), )}.
r r
t r r t r r

V x t t V x t t
σ σ

µ
−

≤E E  (9) 

Further, if there also exist some nonnegative constants 

ρ ≥ 0 such that 

,

s

s a

λ

ρ

λ λ

<

+

 (10) 

and for any t ≥ t
0
, 

0 0
( ) ( ).

a

T t t t tρ− ≤ −  (11) 

Then, system (6) is GASiP for all 

ln( )

(1

.

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 

Proof: Denote 
( )
( , )

t
W x t

σ

 by 
( )

.( , )
s
t

t
e V x t

λ

σ
 Then, 

in each time interval 
1

[t , t ),
l l+

 according to inequality 

(8), we can obtain that 

1

( )

( ) 1

0, ( , );

( , )

( ) ( , ), ( , ).

s l l

t

s a t a l l

t T t t

LW x t

W x t t T t t
σ

σ

λ λ

+

+

∈⎧⎪
≤ ⎨

+ ∈⎪⎩

 

According to (9) and 
( ) ( )

d

{ ( , )} { ( ,

d
t t

LW x t W x

t

σ σ

=E E  

)},t  when 
1

( , ),
a l l

t T t t
+

∈ { ( ( ), )} { ( ( ),
l

W x t t W x t
σ σ

≤E E  

( )( )

)} ;
s a l

t t

l
t e

λ λ+ −

 when 
1 0 1

( , ),) [ ,
s l l

t T t t t t
+

∈ ∪  
( )

{
t

W
σ

E  

( ) 1 1
( ( ), )} { ( ( ( )), ( ))}.

t l a l l l a l l
x t t W x t T t t t T t t

σ + +

≤ + − + −E  

Then, for 
1

[ , ),
l l

t t t
+

∈ ,l∈!  it holds that 
( )

{
t

W
σ

E  

2

( ) ( )

( )
( ( ), )} { ( ( ), )} .

s a a l

l

T t t

t l l
x t t W x t t e

λ λ

σ
µ

+ −

≤ E  Thus, 

2

2 1

1

2( 1)

2

2( 2)

( ) ( )

( ) ( )

( ) ( )2

( )

( ) ( )3

( ) 1 1

( ) ( )5

( ) 2 2

2 (

{ ( ( ), )} { ( ( ), )}

{ ( ), )}

{ ( ( ), )}

{ ( ( ), )}

s a a l

l

s a a l

l

s a a l

l

s a a l

l

T t t

t t l l

T t t

t l l

T t t

t l l

T t t

t l l

N

W x t t W x t t e

W x t t e

W x t t e

W x t t e

σ

λ λ

σ σ

λ λ

σ

λ λ

σ

λ λ

σ

µ

µ

µ

µ

µ

−

−

−

−

−

+ −

+ −

+ −

− −

+ −

− −

≤

≤

≤

≤

≤

≤

!

E E

E

E

E

0 0

0

0 0

0

, ) ( ) ( )

( ) 0 0

2 ln( )

2 [( ) ]( )

( ) 0 0

{ ( ( ), )}

{ ( ( ), )}

s a a

s a

t t T t t

t

d

N t t

t

W x t t e

W x t t e

λ λ

σ

µ

λ λ ρ

τ τ

σ
µ

∗ ∗

+ −

+ + + −

≤

E

E

 

for any 
1

[ , ),
l l

t t t
+

∈ .l∈!  Then, 

0 0

0

0

( )

2 ln( )

2 [( ) ]( )

( ) 0 0

( ) 0 0 0

{ ( ( ), )}

( ( ), )

( ( ( ), ) ., )

s a s

t

d

N t t

t

t

V x t t

V x t t e

V x t t t t

σ

µ

λ λ ρ λ

τ τ

σ

σ

µ

β

∗ ∗

+ + + − −

≤

−!

E

 

When 

ln( )

(1

,

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 it’s easy to verify that 

.β ∈KL  For any 0,ε >  take .

β

β

ε

= ∈

! KL  By Che-

byshev’s inequality, we have 

0

0

( ) ( ) 0 0 0

( )

1

( ) 0 0 0

{ ( ( ), ) ( ( , ), )}

{ ( ( ), )}

, [ , ).

( ( ( ), ), )

t t

t

l l

t

V x t t V x t t t

V x t t

t t t

V x t t t t

σ σ

σ

σ

β

ε

β
+

≥ −

≤ < ∀ ∈

−

!

!

P

E  

Let 
1

1 2
.( , ) ( ( ), )r s r sβ α β α

−

= °

!

 β  is a KL  function if 

the average dwell time is satisfied. Thus, we have 

0 0 0
{| ( ) | (| |, )} 1 , .x t x t t t tβ ε< − ≥ − ∀ ≥P  

This completes the proof.          � 

Remark 2: The conditions (10) and (11) in Lemma 2 

implies that the considered system can be stable provided 

that the mismatched period is sufficiently small. The co-

ndition (8) indicates that the switched control systems 

can start from unstable systems. Change the condition 

(11) into the one that 
0 0 0 0

( ): ,( )
a

t t T t t t tτ ρ∀ ≥ − ≤ + −  

where τ
0
 can be interpreted as an initial offset which 

allows us to start with a subsystem with mismatched 

controller. Clearly, we have 
0 1 0

0 .t tτ≤ ≤ −  Then, do 

th-e similar analysis, we can also get the conclusion. 

The following result can be obtained directly from the 

proof of Lemma 2. 

Corollary 1: System (6) is pth moment exponentially 

stable for all 

ln( )

(1

,

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 if 
1

α  and 
2

α  in 

Lemma 2 are such that 
1 1
( )

p

s c sα =  and 
2 2
( )

p

s c sα =  

where c
1
 and c

2
 are positive constants. 

The following lemma is useful for the stability of 

retarded system (3) under asynchronous switching. 

Lemma 3: For any C
2,1

 function , ,( )V x t
σ

 let ( )U t  

( , )V x t
σ

=  for 
0
.t t≥  Then { ( )}U tE  is continuous. 

Proof: Based on ˆ’Ito s  formula, we have 

0

0

( ) ( ) 0 0 ( )
( , ) ( ( ), ) ( , )d

t

t t s s

t

V x t V x t t V x s s
σ σ σ

= + ∫ L  (12) 

0

( )

( )

( ( ), )

( , ( ), )d ( ).

t
s

s s

t

V x s s

g s x s x w s

x

σ

σ

∂

+

∂
∫  

Since 
0

([ , ,0]; )
b n

Cξ τ∈ − !F  we can find an integer k
0
 

such that 
0

|| || kξ <  a.s. Then, for each integer 
0
,k k>  

define a sequence of stopping time 
k

ρ  as inf{
k

tρ = ≥  

0 0
:| ( ) | , .}t x t k k k> ∀ >  Clearly, 

k
ρ →∞  as .k →∞  

If t is replaced by 
k k

tτ ρ= ∧  in (12), then the stoch-

astic integral (second integral) in (12) defines a marting-

ale (with k fixed and t varying), not just a local mar-

tingale. Thus, 
0

( ) ( ) 0 0
{ ( ( ), )} { ( ( ), )}

k
k k t

V x V x t t
σ τ σ

τ τ =E E  

0

( )
{ ( , )d }.

k

s s

t

V x s s

τ

σ

+ ∫E L  Letting k →∞  and using 

Fubini’s theorem incorporated with Fatou’s lemma 

yields 

{ }

{ }

0

0

0 ( )

0 ( )

{ ( )} { ( )} ( , )d

{ ( )} ( , ) d ,

t

s s

t

t

s s

t

U t U t V x s s

U t V x s s

σ

σ

= +

= +

∫

∫

E E E

E E

L

L
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for all t ≥ t
0
, which implies { ( )}U tE  is continuous.  � 

Theorem 1: Suppose there exist functions 
1

,α
∞

∈K  

2
,α

∞

∈VK  class C
2,1

 Lyapunov function 
( )
( , )

t
V x t
σ

 

and some constants 0,
s

λ > 0,
a

λ > 1,µ ≥ 0ρ ≥  and q 

> 1, such that inequalities (7) and (9)-(11) hold, and 

moreover, for any ,l∈!  

( )

( ) 1

( ) 1

{ ( ( ), )}

{ ( (0), )}, ( , );

{ ( (0), )}, ( , ),

t

s t s l l

a t a l l

V t

V t t T t t

V t t T t t

σ

σ

σ

ϕ θ

λ ϕ

λ ϕ

+

+

− ∈⎧⎪
< ⎨

∈
⎪⎩

E

E

E

L

 (13) 

provided those ([ ,0]; )
t

p n

Lϕ τ∈ − !
F

 satisfying that 

, ( )

min { ( ( ), )} { ( (0), )},
i j ij t

V t q V t
σ

ϕ θ θ ϕ
∈

+ ≤E ES  (14) 

for any [ ,0]θ τ∈ − . Further, if we also have 

( (1 ) )
s a

e q
λ ρ λ ρ τ− −

≤ . (15) 

Then, system (3) is GASiP for all 

ln( )

(1

.

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 

Proof: According to (7) and Jensen’s inequality, we 

obtain that 

0
( ) 0 0 2 0

[ ( 1) ]

2

{ ( ( ), )} { (| ( ) |)}

( { }) ,
s a

t
V x t t x t

Me

σ

λ ρ λ ρ θ

θ θ α θ

α ξ
− +

+ + ≤ +

≤ ≤

E E

E

 

for any 0 ,[ , ]θ τ∈ −  where 
2
( { }).M α ξ! E  Then, we 

have 
0

0

[ ( 1) ]( )

( )
{ ( ( ), )} ,

s a
t t

t
V x t t Me

λ ρ λ ρ

σ

− + −

≤E
0

[ ,t t τ∈ −  

0
.]t  Now, for any 

0 1
[ , ,)t t t∈  we prove that 

0

0

[ ( 1) ]( )

( )
{ ( ( ), )} .

s a
t t

t
V x t t Me

λ ρ λ ρ

σ

− + −

≤E  (16) 

Suppose there exists some 
0 1

( , )t t t∈  such that 

0

0

[ ( 1) ]( )

( )
{ ( ( ), )} .

s a
t t

t
V x t t Me

λ ρ λ ρ

σ

− + −

>E  Let inf{t t

∗

=  

0

0

[ ( 1) ]( )

0 1 ( )
( , ) : { ( ( ), )} }.

s a
t t

t
t t V x t t Me

λ ρ λ ρ

σ

− + −

∈ >E  Con-

sidering the continuity of 
0

( )t
V
σ

 and x(t) on 
0 1

[ , ),t t  

without loss of generality, we have 
0 1

( , )t t t

∗

∈  and 

0

0

( ( 1) ( )

( )

)

{ ( ( ), .)}
s a

t t

t
V x t t Me

λ ρ λ ρ

σ

∗

− + −∗ ∗

=E  Further, there 

exists a sequence { }
n

t!

1
( ( , ),
n

t t t

∗

∈
!  for any )n

+

∈!  

with l ,im
n

n

t t

∗

→∞

=
!  such that 

0
( )

{ ( ( ), )}
t n n

V x t t
σ

>
! !E  

0
[ ( 1) ]( )

.

s a n
t t

Me

λ ρ λ ρ− + −

!

 From the definition of t
*

, we have 

0 0

0

0

( ) ( )

( ( 1) )

( )

( )

{ ( ( ), )} { ( ( ), )}

{ ( ( ), )}

{ ( ( ), )},

s a

t t

t

t

V x t t V x t t

e V x t t

q V x t t

σ σ

λ ρ λ ρ θ

σ

σ

θ θ
∗ ∗ ∗ ∗

− + ∗ ∗

∗ ∗

+ + ≤

≤

≤

E E

E

E

 

and further 

0
, ( )

min { ( ( ), )} { ( ( ), )},
i j ij t

V x t t q V x t t
σ

θ θ
∗ ∗

∈

+ + ≤E ES  

for any 0 .[ , ]θ τ∈ −  On the other hand, from Lemma 3, 

we have { ( , )} { ( , )},
t

D V x t V x t
σ σ

+

=E E L  where 

( )

( ) ( )

0

{ ( , )}

{ ( ( ), )} { ( , )}

lim sup .

t

t h t

h

D V x t

V x t h t h V x t

h

σ

σ σ

+

+

+

→

+ + −

=

E

E E  

From inequality (13), we can obtain 

0 0
( ) ( )

{ ( ( ), )} { ( ( ), )}.
t s t

D V x t t V x t t
σ σ

λ
+ ∗ ∗ ∗ ∗

< −E E  (17) 

for any 
0 1

[ , .)t t t∈  Clearly, there exists a positive const-

ants h > 0, which is small enough, such that (17) holds 

on [ ].,t t h

∗ ∗

+  Then, 

0 0

0

( ) ( )

[ ( 1) ]( )

{ ( ( ), )} { ( ( ), )}

,

s

s a

h

t t

t t

V x t h t h V x t t e

Me

λ

σ σ

λ ρ λ ρ
∗

−∗ ∗ ∗ ∗

− + −

+ + ≤

≤

E E

 

which is contradiction proves (16).  

Considering the continuity, we further get that (16) 

holds on all interval [t
0
,t
1
]. According to condition (9), 

when 
1 1

,t t t= =  we have 

1 0

1

[ ( 1) ]( )

( ) 1 1
{ ( ( ), )}

s a
t t

t
V x t t Me

λ ρ λ ρ

σ
µ

− + −

≤E  (18) 

Let 
( ) ( )
( ) ( ( ) ,, )

s
t

t t
W t e V x t t

λ

σ σ
=  then, 

1
( ) 1

{ ( )}
t

W t
σ

µ≤E  

0
( ) 1

{ ( ) .}
t

W t
σ

E  For any ,l∈!  in time interval 
1

[ , ),
l l
t t

+

 

we also have 

1

( )

( ) 1

0, ( , );

( )

( ) ( ), ( , ).

s l l

t

s a t a l l

t T t t

W t

W t t T t t
σ

σ

λ λ

+

+

∈⎧⎪
< ⎨

+ ∈⎪⎩

L  

Similarly, from Lemma 2 and Remark 2, we can obtain 

( ) 0 1

0

( ) 0 0

0

2 ( , ) ( ) ( )

( ) ( ) 1

2 ( , ) ( ) ( )

( ) 1

{ ( )} { ( )}

{ ( )} ,

t
s a a

t
s a a

N t t T t t

t t

N t t T t t

t

W t W t e

W t e

σ

σ

λ λ

σ σ

λ λ

σ

µ

µ

+ −

+ −

≤

=

E E

E

 

which means 

( ) 0 1 0 0 1

0 0

1 0

( )

2 ( , ) [ ( 1) ]( ) ( ) ( ) ( )

2 ln( )

2 [( ) ]( )

( )( )

{ ( ( ), )}

.

t
s a s a a s

s a s

s a

t

N t t t t T t t t t

d

N t t

t t

V x t t

Me e e

e Me

σ

σ

λ ρ λ ρ λ λ λ

µ

λ λ ρ λ

ρ λ λ
τ τ

µ

µ

∗ ∗

− + − + − − −

+ + − + −

+ −

≤

≤

E

 

This completes the proof by Lemma 2.       � 

Theorem 2: Let 
1

.sup { }
l l l

t tς
+

∈ −

= − < ∞!  Suppose 

there exist functions 
1

,α
∞

∈K
2

,α
∞

∈VK  class C
2,1

 

Lyapunov function 
( )
( , )

t
V x t
σ

 and some constants λ
s
 > 

0, λ
a
 > 0, µ≥ 1, and q > 1, such that inequalities (7), (9), 

(13) and (14) hold. Further, if there also exists 

nonnegative constant ρ, such that for any 
0
,t tτ≥ ≥   

s

s a

λ

ρ

λ λ

<

+

, (19) 

( ) ( )
a

T t tτ ρ τ− ≤ − . (20) 
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Moreover, condition (15) is also satisfied. Then, system 

(3) is GASiP for all 

ln( )

(1

.

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 

Proof: Following the proof of Theorem 1, we have 

0

0

[ ( 1) ]( )

( )
{ ( ( ), )} ,

s a
t t

t
V x t t Me

λ ρ λ ρ

σ

− + −

≤E  
0 1

[ , ,]t t t∀ ∈  

and  

1 0

1 0

( ) 1 1 ( ) 1 1

[ ( 1) ]( )

{ ( ( ), )} { ( ( ), )}

.
s a

t t

t t

V x t t V x t t

Me

σ σ

λ ρ λ ρ

µ

µ

− + −

≤

<

E E

 

Divide the time interval into 
1 2

( , )
a

T t t  and 
1 2

( , ).
s

T t t  

From condition (13), if (14) holds, we have 

( )

( ) 1 2

( ) 1 2

{ ( ( ), )}

{ ( ( ), )},  ( , );

{ ( ( ), )},  ( , ).

t

s t s

a t a

D V x t t

V x t t t T t t

V x t t t T t t

σ

σ

σ

λ

λ

+

− ∈⎧⎪
< ⎨

∈
⎪⎩

E

E

E

 

Let ( .( ) , )
s
t

W t e V x t

λ

σ σ
=  By the continuity of ( ,V x

σ

 

t) on any interval 
1

[ , ),
l l
t t
−

,l
+

∈!  it’s easy to verify 

that 
( )

{ ( )}
t

W t
σ

E  is continuous on 
1

[ , ).
l l
t t
−

 Moreover, 

( ) ( ) ( )
( ) ( ) ( ., )

s
t

t s t t t
W t W t e V x t

λ

σ σ σ
λ= +L L  Then 

( )

1 2

( ) 1 2

{ ( )}

0, ( , );

( ) { ( )}, ( , )

 

 .

t

s

s a t a

D W t

t T t t

W t t T t t

σ

σ

λ λ

+

∈⎧⎪
< ⎨

+ ∈⎪⎩

E

E

 

Similar to Theorem 1, for any 
1 2

[ , ),t t t∈  we have 

2 1

1

( ) ( )

( ) ( ) 1
{ ( )} { )} ,(

s a a
T t t

t t
W t W t e

λ λ

σ σ
µ

+ −

≤E E  

i.e., 

1 2 1

1

0 2 1 1 0

( )

( ) ( ) ( )

( ) 1 1

( ) ( )( ( ) ( ))2

{ ( , )}

{ ( ( ) )

.

, }
s s a a

s s a a

t

t t T t t

t

t t T t t t t

V x t

V x t t e

Me e

σ

λ λ λ

σ

λ λ λ ρ

µ

µ

− − + + −

− − + − + −

≤

=

E

E  

By the continuity of 
( )
( , )

t
V x t
σ

 and x, we have 

1

0 2 1 1 0

( ) 2 2

( ) ( )( ( ) ( ))2

{ ( ( ), )}

.
s s a a

t

t t T t t t t

V x t t

Me e

σ

λ λ λ ρ

µ

− − + − + −

≤

E

 

Now, suppose that for some 2,l ≥  we have 

1 1 0

0 1

( )

( )( ( ) ( ))

( )2

{ ( ( ), )}

,

l

s a a i i

s i

t

T t t t t

t tl

V x t t

Me e

σ

λ λ ρ

λ

µ

+

=

+ − + −

− −

∑

≤

E

 

for any 
1

[ , ).
l l

t t t
+

∈  If for any 
1 2

[ , ],
l l

t t t
+ +

∈  we have 

0

1

1 1 0

1

( )2 2

( )

( )( ( ) ( ))

{ ( ( ), )}

,

s

l

s a a i i

i

t tl

t

T t t t t

V x t t Me

e

λ

σ

λ λ ρ

µ

+

+

=

− −+

+ − + −

≤

∑

×

E

 (21) 

then by mathematical induction, the above assumption 

holds. Actually, by the above induction, (21) holds 

clearly. Thus, for all t ≥ t
0
, 

( , )
0

1

0 1

( ) ( )

2 ( , )

( )
{ ( ( ), )}

N t t

s a a i i

i

T t t

N t t

t
V x t t Me

σ

σ

λ λ

σ
µ

+

=

+ −∑

≤E  

1 0 0
( ) ( ) ( )

.

s a s
t t t t

e e

λ λ ρ λ+ − − −

×  (22) 

Combining (20) and (22), it follows that 

( )
{ ( ( ), )}

t
V x t t
σ

E  

( , ) 1
0 0 0 0

0 0

0 0

( ) ( )2 ( , ) ( ) ( ) ( )

2 ( , ) [ ( 1) ]( ) ( )

2 ln( )

2 [ ( 1) ]( )

( )

s a N t t
s s a

s a s a

s a

s a

t t
N t t t t t t

N t t t t

d

N t t

Me e e

Me e

e Me

σ σ

σ

λ λ ρλ λ λ ρ

λ ρ λ ρ λ λ ρς

µ

λ ρ λ ρ

λ λ ρς
τ τ

µ

µ

µ

+

∗ ∗

+ −
− − + −

− + − +

+ − + + −

+

≤

≤

≤

0
( { }, ).t tβ ξ −

!" E  

If 

ln( )

(1

,

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 then ( , ) .β ⋅ ⋅ ∈

! KL  The proof 

is completed similarly to Lemma 2.       � 

Remark 3: λ
a
 and λ

s
 are referred to the instability 

margin and the stability margin, respectively. From (15), 

it is seen that for any fixed q, τ and stability margin λ
s
, a 

large instability margin λ
a
 can be compensated by a small 

0 < ρ < 1. That is to say, the switched system is stable 

provided that the proportion of mismatched time is small 

enough. 

Remark 4: Condition (20) requires this upper bound 

to hold uniformly over any interval [ , )tτ  with arbitrary 

starting point ,tτ ≤  which offers a simple strategy to 

design the switching signal. Since all detection delays are 

bounded, we can design the switching signal with 

sufficiently large average dwell-time directly. 

Similar to Corollary 1, the following useful corollary 

is obtained. 

Corollary 2: System (3) is pth moment exponentially 

stable for all 

ln( )

(1

,

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 if α
1
 and α

2
 in 

Theorem 1 or in Theorem 2 are such that α
1
(s) = c

1
s
p

 and 

α
2
(s) = c

2
s
p

 where c
1
 and c

2
 are positive constants. 

Remark 5: In reference [24], by using the Razumik-

hin method and the average dwell time approach, the 

criterion of pth moment exponentially stability for a class 

of switched stochastic nonlinear systems is developed. 

However, the focus of our work is on stability analysis 

under asynchronous switching, which is very different 

from [24], and this is also the major contribution of our 

work. In fact, if we let σ'(t) ≡ σ(t), i.e., we consider 

synchronous switching, then the closed-loop dynamic in 

(3) is the same as (2.1) in [24]. In this case, ρ ≡ 0 in 

Corollary 2. Then, the result in Corollary 2 is the same 

the result in [24]. 

Remark 6: In this paper, we consider only the 

detection delay, assumed to satisfy some conditions, i.e., 

1
( ) inf { }.

l l l
d t d t t
σ ∈ +

≤ ≤ −!  However, if there exists a 

detection error, then the assumption may not hold. (The 

same problem also appears in the results in reference 

[41-43], etc.) This difficulty leaves for our future endeavor. 
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4. APPLICATION AND EXAMPLE 

 

We apply the general Razumikhin-type Corollary 2 to 

deal with the pth moment exponentially stability for a 

special type of switched stochastic nonlinear delay feed-

back systems, where the controller is designed with both 

state and switching delays. 

Consider the following switched stochastic nonlinear 

control system 

1 1

( ) 2

0 0 0 0

d ( , , , ( ))d ( , , , ( ))d ,

( ) ( , ),

( ) ( ), ( ) ( ) , ,

t

x F t x y u t t G t x y u t w

u t H t y

x s s s t i t s t

σ σ

σ

φ σ σ τ

′

⎧ = +

⎪
=⎨

⎪
= = = − ≤ ≤

⎩

 (23) 

on 
0
,t t≥  where 

1 1
( ) ( ( )),y t x t d t= −

2 2
( ) ( ( )).y t x t d t= −  

1 2
0 max{ ( ), ( )} .d t d t τ≤ ≤  Assume :

n n

i
F

+

× × ×! ! !  

,

l n

→! ! :

n n l n m

i
G

×

+

× × × →! ! ! ! !  and :
i

H  

n l

+

× →! ! !  are continuous with ( ,0,0,0)
i
tF ≡ 0 and 

( ,0,0,0) 0
i

G t ≡  for all ,i∈S  and moreover system 

(23) has the unique solution. For convenience, we trans-

fer the system (23) into the following type, i.e., 

( ) 1 2 ( ) 1 2
d ( , , , )d ( , , , )d .

t t
x F t x y y t G t x y y w

σ σ

= +  (24) 

For any given 
2,1

( )
,( ; )

n n n

t
V C
σ + +

∈ × × ×! ! ! ! !  the 

diffusion operator 
( )t

V
σ

L  in (5) becomes from 
n

×!  

n n

+

× × × ×! ! ! S S  to !  by [18]: 

( ) 1 2

( ) ( )

( ) 1 2

2

( )

( ) 1 2 ( ) 1 2
2

( , , , )

( , ) ( , )

( , , , )

( , )1

[ ( , , , ) ( , , , )].

2

t

t t

t

t

t t

V x y y t

V x t V x t

F t x y y

t x

V x t

trace G t x y y G t x y y

x

σ

σ σ

σ

σ

σ σ

∂ ∂

= +

∂ ∂

∂

+

∂

L

 

Using Corollary 2, the following result is obtained. 

Corollary 3: Let 
1

.sup { }
l l l

t tς
+

∈ −

= − < ∞!  For each 

,

l
i ∈S ,l∈!  suppose there exist a class C

2,1

 Lyapunov 

function 
( )
( ( ), )

t
V x t t
σ

 and some positive constants c
1
, c

2
, 

,

l
si

λ ,

l
i

λ ,

l
ai

λ 1µ ≥  and 1,q >  such that  
1 ( ) 2
| ( ) | ( ( ), ) ,| ( ) |

p p

t
c x t V x t t c x t

σ

≤ ≤  (25) 

and when 
1

( , )
s l l

t T t t
+

∈  with 
1 10 0

( , ) , ,[ )
s

T t t t t=  

( ) 1 2

2

( )

,
1

( , , , )

( , ) min ( , ( ));
l l

t

si t i k ij k k

i j
k

V x y y t

V x t V y t d t

σ

σ

λ λ

∈

=

< − + −∑
S

L

 (26) 

when 
1

( , )
a l l

t T t t
+

∈  with 
0 1

( ) ,,
a

T t t =∅  

( ) 1 2

2

( )

,
1

( , , , )

( , ) min ( , ( )),
l l

t

ai t i k ij k k

i j
k

V x y y t

V x t V y t d t

σ

σ

λ λ

∈

=

< + −∑
S

L

 (27) 

provided those ([ ,0]; )
t

p n

Lϕ τ∈ − !
F

 satisfying that  

, ( )

min { ( ( ), )} { ( (0), )}
i j ij t

V t q V t
σ

ϕ θ θ ϕ
∈

+ ≤E ES  (28) 

for any [ ,0].θ τ∈ −  And for all ,r
+

∈!  we have 

1
( ) ( )

{ ( ( ), )} { ( ( ), ) .}
r r
t r r t r r

V x t t V x t t
σ σ

µ
−

≤E E  (29) 

Let { },max
l l

k i i k
λ λ

∈

= S

2

1

min { }
l l

s i si k
k

qλ λ λ
∈

=

= −∑S  

0>  and 
2

1

max { } .

l l
a i ai k

k

qλ λ λ
∈

=

= +∑S  If there also 

exist some nonnegative constant ρ, such that (19), (20) 

and (15) hold. Then, system (24) is pth moment 

exponentially stable for all 

ln( )

(1

.

)
s a

µ

τ

λ ρ λ ρ

∗

>

− −

 

Proof: Taking the expectation on the both sides of (26) 

and (27), by Fatou’s lemma and from (28), we have 

( ) 1 2

( ) 1

( ) 1

{ ( ( ), ( ), ( ), )}

{ ( ( ), )}, ( , );

{ ( ( ), )}, ( , ).

t

s t s l l

a t a l l

V x t y t y t t

V x t t t T t t

V x t t t T t t

σ

σ

σ

λ

λ

+

+

− ∈⎧⎪
< ⎨

∈
⎪⎩

E

E

E

L

 

For any 
0

t t≥  and ([ ,,0]; )
t

p n

Lϕ τ∈ − !
F

 define 

( ) ( ) 1 2
( , (0), ) ( , (0), ( ( )), ( ( ))),

t t
f t F t d t d t
σ σ

ϕ ϕ ϕ ϕ ϕ= − −  

and 

( ) ( ) 1 2
( , (0), ) ( , (0), ( ( )), ( ( ))).

t t
g t G t d t d t
σ σ

ϕ ϕ ϕ ϕ ϕ= − −  

Thus, all the conditions in Corollary 2 are satisfied. This 

completes the proof. � 

The following example is considered to demonstrate 

the effectiveness of the proposed method. 

Example 1: Consider the following switched stochas-

tic nonlinear systems. 

( ) ( ) ( ) ( )
d [ ( , )]d d ,

t t t t
x A x B u f t x t C x w

σ σ σ σ

= + + +  

where :

n n

i
f

+

× →! ! ! is an unknown nonlinear func-

tions satisfying 
2

| ( , ( )) | | ,( ) |
i i
f t x t U x t≤  for any i∈  

,S  where 
2

|| ||⋅  denotes the 2-norm of the matrix. Set 

( ) ( )
( ) ) ( )),( (

t t
u t K y t K x t d t

σ σ′ ′

= = −  then 

( ) ( ) ( ) ( )

( )

d [ ( , )]d

d .

t t t t

t

x A x B K y f t x t

C x w

σ σ σ σ

σ

′

= + +

+

 (30) 

Let ( ) ( , .( ) ( ))t t tσ σ σ ′= ∈ ×S S  For system (30), take 

( ) ( )
( ) .

T

t t
V x x P x
σ σ

=  Following reference [46], the con-

clusion that 
1

,

T T T T T

HFE E F H HH E Eε ε

−

+ ≤ +  holds 

for any 0,ε >  when ,

T

F F I≤  where I is an identity 

matrix with appropriate dimension. Then 

1 2

1 1

1 2

( ) [ ]

( , ) ( , ),

T T T

ii i ii ii i i ii i ii ii

T T T T

i i ii i i i ii i

V x x A P P A C P C P P x

y K B P B K y f t x P f t x

ε ε

ε ε

− −

≤ + + + +

+ +

L
 

and 

3 4
( ) [ ]

T T T

ij i ij ij i i ij i ij ij
V x x A P P A C P C P P xε ε≤ + + + +L  

 
1 1

3 4
( , ) ( , ),

T T T T

j i ij i j i ij i
y K B P B K y f t x P f t xε ε

− −

+ +  
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for any ,i j∈S  and .j i≠  Let 
1

i ii
X P

−

=  and 
ii

K =  

.

T

i i
X K  If there exist positive constants β

1
 and β

2
 such 

that 

1

1 2
, .

i ij
X I P Iβ β

−

> <  (31) 

Then, 

1 2
( )

T T T

ii i ii ii i i ii i ii ii
V x x A P P A C P C P Pε ε≤ + + + +⎡

⎣
L  

1 1

2 1 1
,

T T T T

i i i i ii i i
U U x y K B P B K yε β ε

− −

⎤+ +
⎦

 

and 

3 4

1 1

4 2 3

( )

.

T T T

ij i ij ij i i ij i ij ij

T T T T

i i j i ij i j

V x x A P P A C P C P P

U U x y K B P B K y

ε ε

ε β ε
− −

⎡
⎣

≤ + + + +

⎤+ +
⎦

L

 

According to Corollary 3, if there exist positive con-

stants λ
si
, λ

ai
 and λ

i
 such that  

1 2

1 1

2 1 1

,

T T T

i ii ii i i ii i ii ii

T T T T

i i i i ii i i

T T

si ii i ii

x A P P A C P C P P

U U x y K B P B K y

x P x y P y

ε ε

ε β ε

λ λ

− −

⎡ + + + +
⎣

⎤+ +
⎦

< − +

 

and  

3 4

1 1

4 2 3

,

T T T

i ij ij i i ij i ij ij

T T T T

i i j i ij i j

T T

ai ij i ij

x A P P A C P C P P

U U x y K B P B K y

x P x y P y

ε ε

ε β ε

λ λ

− −

⎡ + + + +
⎣

⎤+ +
⎦

< +

 

which means 

{ }
11 22
, 0,diagΩ = Ω Ω <  (32) 

{ }
11 22
, 0,diagΣ = Σ Σ <  (33) 

where 
1

11 1 2 2

T T

i ii ii i i ii i ii ii
A P P A C P C P Pε ε ε

−

Ω = + + + + + ×  

1
,

T

i i si ii
U U Pβ λ+

1

22 1
,

T T

i ii i i ii i i
P K B P B Kλ ε

−

Ω = − +
11

Σ =

1

3 4 4 2
,

T T T

i ij ij i i ij i ij ij i i ai ij
A P P A C P C P P U U Pε ε ε β λ

−

+ + + + + −

1

22 3
,

T T

i ij j i ij i j
P K B P B Kλ ε

−

Σ = − +  εk > 0, 1,2, .3,4k =  Us-

ing 
1 1

{ , }
ii ii

diag P P
− −

 to pre- and post- multiply the left 

terms of matrix inequality (32); and using Schur’s comp-

lement lemma, then (32) is equivalent to 

11

1

2 1

1

0 0

* 0 0 0

0,* * 0 0

* * *

* * * *

T

i i i i

i

T

i i ii i

i

X U X C

I

X

X K B

X

ε β

λ

ε

−

⎡ ⎤Ω

⎢ ⎥

−⎢ ⎥

⎢ ⎥
<−

⎢ ⎥

⎢ ⎥
−

⎢ ⎥

−⎢ ⎥⎣ ⎦

 (34) 

where 
11 1 2

.
T

i i i i i i si i
X A A X X X Xε ε λΩ = + + + +  More-

over, if there also exist q > 1 and µ≥ 1, such that, Pii, Pij, 

λsi, λai, λi, q and µ satisfy the corresponding conditions in 

Corollary 3, then system (30) is 2nd moment exponen-

tially stable. 

Specify system (30) as follows 

1

5 2

,

5 3

A

− −⎡ ⎤

=
⎢ ⎥

−⎣ ⎦

  
1

1 0

,

0 1

B

−⎡ ⎤

=
⎢ ⎥

⎣ ⎦

 

2

4 0

,

1 5

A

−⎡ ⎤

=
⎢ ⎥

−⎣ ⎦

  
2

1 2

,

0 1

B

−⎡ ⎤

=
⎢ ⎥

⎣ ⎦

 

1

0.2 0

,

0.3 0.5

C

⎡ ⎤

=
⎢ ⎥
−⎣ ⎦

  
2

0.3 0.2

,

0 0.5

C

−⎡ ⎤

=
⎢ ⎥

⎣ ⎦

 

1

0.5cos( ) 0.1sin(| |)

( , ) ,

0 0.1sin( )

t x

f t x x

t

⎡ ⎤

=
⎢ ⎥

−⎣ ⎦

 

1

0.5 0.1

,

0 0.1

U

⎡ ⎤

=
⎢ ⎥

−⎣ ⎦

 

2

0.1cos( )sin(| |) 0

( , ) ,

0 0.5sin( )

t x

f t x x

t

⎡ ⎤

=
⎢ ⎥

⎣ ⎦

 

2

0.1 0

.

0 0.5

U

⎡ ⎤

=
⎢ ⎥

⎣ ⎦

 

( ) 0.8cos( ).d t t=  Take 
1

2.8,
s

λ =

2
3,

s

λ =

1
0 0 ,. 3

a

λ =  

2
0 0 ,. 1

a

λ =

1
7,0.0λ =

2
1,0.1λ =

1
1,β =

1
2,1.ε =

2
ε =  

1.5, 
3

3ε =  and 
4

4.ε =  Then, using the LMI toolbox 

in the MATLAB, we get 

11

1

0.5762 0.0354

,

0.0354 0.2707

0.2647 0.0399

,

0.0212 0.2050

P

K

⎡ ⎤

=
⎢ ⎥

⎣ ⎦

⎡ ⎤

=
⎢ ⎥

⎣ ⎦

 

12

2

22

21

189.9085 44.5369

,

44.5369 87.1685

0.4129 0.1255

,

0.1191 0.1606

0.3792 0.0493

,

0.0493 0.4606

128.9302 6.1472

,

6.1472 96.2041

P

K

P

P

⎡ ⎤
=
⎢ ⎥

⎣ ⎦

⎡ ⎤
=
⎢ ⎥

⎣ ⎦

−⎡ ⎤
=
⎢ ⎥
−⎣ ⎦

−⎡ ⎤
=
⎢ ⎥
−⎣ ⎦

 

and 1.7 ,737µ =

2
268.2155.β =  Take q = 3, then λ =  

0.11, 47,2.
s

λ =  and 36.0.
a

λ =  Set 8,0.τ = ρ =  

1

0.4 4,36

2

s

a s

λ

λ λ

=

+

 then 
( (1 ) )

3
s a

q e

λ ρ λ ρ τ− −

= > =2.6859. 

Then, according to the above analysis, system (30) is 2nd 

moment exponentially stable for all τ
* 

> 0.4640s. The 

simulation results are shown in Figs. 1, 2, and 3. Figs. 1 

and 2 show the Brownian motion w(t) and the switching 

signal in system (30), respectively. More-over, the detec-

tion delay in Fig. 2 satisfies the conditions in Corollary 3. 

Finally, Fig. 3 shows the trajectory of x(t) under the ini-

tial data x
0 
= ( 8, 6)± ∓ . Under the asynchronous switching 

signal σ'(t) in Fig. 2, the state x(t) will converge to zero. 
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Fig. 1. Response curve of Brownian motion w(t). 

 

 

Fig. 2. Switching signal σ(t) and the detected σ'(t). 

 

 

Fig. 3. Response curve of x(t). 

 

5. CONCLUSION 

 

The stability of a class of stochastic nonlinear retarded 

systems under asynchronous switching is investigated. 

Based on the average dwell time approach, the correspo-

nding Razumikhin-type stability criteria on globally 

asymptotically stable as well as pth moment exponential-

ly stable are given. It is shown that the switched system 

can be stable when the mismatched interval is small 

enough while the average dwell time is large enough. 

Finally, we apply the results to a class of stochastic 

nonlinear delay systems where the design of controller is 

considered with both state and switching delays and 

meaningful results are obtained, which are illustrated by 

a numerical example. 
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