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Stability Analysis of A Class of Hybrid Stochastic
Retarded Systems Under Asynchronous Switching
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Abstract—The stability of a class of hybrid stochastic retarded
systems (HSRSs) with an asynchronous switching controller is
investigated. In this model, the controller design relies on the
observed jumping parameters, which are however delayed and
thus can not be measured in real-time precisely. This delayed time
interval, referred to as the “asynchronous switching interval”, is
Markovian and dependent on the actual switching signal. The suf-
ficient conditions under which the system is either stochastically
asymptotic stable or input-to-state stable are obtained by apply-
ing the extended Razumikhin-type theorem to the asynchronous
switching interval. These results are less conservative as it is only
required that the designed Lyapunov function is non-decreasing.
It is shown that the stability of the considered system can be
guaranteed by a sufficiently small mode transition rate of the
underlying Markov process, which is a conclusion similar to that
in asynchronous deterministic switched systems. The effectiveness
and correctness of the obtained results are finally verified by a
numerical example.

Index Terms—Asynchronous switching, hybrid stochastic re-
tarded systems, Markovian switching, Razumikhin-type theorem,
stochastic stability, time-delay.

I. INTRODUCTION

A switched system consists of a family of subsystems (or,
the modes) and a switching signal governing the switches

between the modes [1]–[7]. It is called a randomly switched
system if the mode switches are governed by a stochastic
process statistically independent from the system states and,
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further, a Markovian jump linear system (MJLS) if the stochas-
tic process is Markovian and the system dynamic is linear
[8], [9]. MJLSs have received considerable attentions in theory
[10]–[19], and are found to be appropriate models for manufac-
turing systems [20], power systems [21], robots control systems
[22], etc.

For a switched systems, mode-dependent controller has
received more and more attention, which is believed to be
less conservative. The mode-dependent controller design for
switched systems are often assumed to be strictly synchronized
[23]–[29], which may not generally hold in reality due to
unknown and unpredictable issues such as time-delay, distur-
bance, component and interconnection failures, etc. Specifi-
cally, in practical systems, time-delay often appears in switched
systems either in input control or in output measurements,
due to the distance between the place where control signal is
generated and the place where control signal is applied to the
plant as well as significant communication distance between
the sensor and the controller. On the other hand, for the mode-
dependent controller design, the switching information is nec-
essary. However, due to the existence of environmental noises,
disturbances, and small modelling uncertainties, considerable
time is needed in the mode detection of the plant. It thus
presents a great challenge at the boundary of switched systems
and time delay systems, and the concept of asynchronous
switching is proposed to deal with this phenomenon. Roughly
speaking, the so-called “asynchronous switching” is caused by
the detection delay of switching signal which results in the
mismatched period of designed controller in each subsystem.
The subsystems may be unstable between these mismatched pe-
riods. Considerable studies have been reported in this area, for
example, state feedback stabilization [30], input-to-state stabi-
lization [31], and output feedback stabilization [32], the use of
the average dwell time approach [33]–[37], just to name a few.

In the past two decades, almost all the research on asyn-
chronous switching systems are for deterministic switched sys-
tems while the asynchronous randomly switched systems have
received little attention, especially for nonlinear systems. The
switching signal’s stochastic properties of randomly switched
systems lead to the following two difficulties in the analysis
of the systems stability. Firstly, since the switching signal is
a stochastic process, the methods in deterministic switched
systems, e.g., dwell time approach or average dwell time ap-
proach, are difficult to be used directly. Secondly, the detected
switching signal is still a stochastic process. The relationship
between the detected switching signal and the origin switch-
ing signal further increases the complexity of the problem.
Recently, the asynchronous issues of MJLSs have also been
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studied [38]–[40]. Among them, [38] and [39] investigated
the stability and stabilization problem for a class of discrete-
time MJLSs via time-delayed controller. In [40], by defining
two Markov processes, the stability of the continuous-time
MJLSs with detection delays and false alarms in detected
switching signal and discrete-time MJLSs with constant time
delays or random communication delays in mode signal are
developed. Surprisingly, the studies on the stability analysis
for asynchronous stochastic nonlinear systems with Markovian
switching are scarce. This motivates our present study.

In this paper, we focus on the stability analysis of a class
of hybrid stochastic retarded systems (HSRSs) under asyn-
chronous switching. In HSRSs, each subsystem is described by
a stochastic functional differential equation, and the switching
rule between those subsystems is a continuous-time Markov
process. We will consider the asynchronous case with random
detection delay and model the detected switching signal as a
Markov process conditional on the real Markovian switching
signal. The Razumikhin-type sufficient criteria for globally
asymptotically stability in probability (GASiP) [41], α-globally
asymptotically stability in the mean (α-GASiM) [42], pth
moment exponentially stability [43], stochastic input-to-state
stability (SISS) [41], α-input-to-state stability in the mean
(α-ISSiM) [42] and pth moment input-to-state stability (pth
moment ISS) [44], are given. It is shown that, the stability
of HSRSs under asynchronous switching can be guaranteed
provided that the mode transition rate is sufficiently small, i.e.,
a larger instability margin can be compensated for by a smaller
transition rate.

The remainder of the paper is organized as follows. The
problem is formulated and necessary definitions and lemmas
are given in Section II. The global asymptotic stability and
input-to-state stability are then discussed in Section III and
Section IV, respectively. Then, the main results are extended
to a class of hybrid stochastic delay systems and the simulation
results are given in Section V. Section VI concludes the paper.

Notations: N+ and R+ denote the set of all positive integers
and nonnegative real numbers, respectively; Rn and Rn×m

denote n-dimensional real space and n×m dimensional real
matrix space, respectively. For vector x∈Rn, |x| denotes the
Euclidean norm |x|=(

∑n
i=1 x2

i )
1/2. Let τ≥0 and C([−τ, 0];

Rn) denote the family of all continuous Rn-valued functions ϕ
on [−τ, 0] with the norm ∥ϕ∥ = sup{|ϕ(θ)| : −τ≤θ≤0}. Let
Cb

F0
([−τ, 0]; Rn) be the family of all F0-measurable bounded

C([−τ, 0]; Rn)-valued random variables ξ={ξ(θ) : −τ≤θ≤
0}. For p > 0 and t≥0, let Lp

Ft
([−τ, 0]; Rn) denote the family

of all Ft-measurable C([−τ, 0]; Rn)-valued random variables
φ={φ(θ) : −τ≤θ≤0} such that sup−τ≤θ≤0 E{|φ(θ)|p} <
∞. AC denotes the complementary set of set A. Ci,k denotes
all the functions with ith continuously differentiable first com-
ponent and kth continuously differentiable second component.
A function α : R+→R+ is said to belong to class K if α
is continuous, strictly increasing and α(0) = 0. And if α is
also unbounded, then it is of class K∞. A function β : R+×
R+→R+ is of class KL, if β(·, t) is of class K in the first
argument for each fixed t≥0 and β(s, t) decreases to 0 as
t→+∞ for each fixed s ≥ 0. We denote the class CK (CK∞)
function and VK (VK∞) function as the subset of class K (K∞)

function, which are concave and convex, respectively. Finally,
the composition of two functions α : A→B and β : B→C is
denoted by α ◦ β : A→C.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following asynchronous Markovian switching
nonlinear systems:

⎧
⎨

⎩

dx(t) = f (t, xt, ν(t), r(t)) dt
+g (t, xt, ν(t), r(t)) dw(t)

ν(t) = h (t, xt, u(t), r′(t))
(1)

with the initial state x0 ={x(θ) :−τ≤θ≤0}=ξ∈Cb
F0

([−τ, 0];
Rn) and r0 =r(0)= i0, where xt ={x(t+θ) :−τ≤θ≤0} is a
C([−τ, 0]; Rn)-valued random variable. w(t) = (w1(t), w2(t),
. . . , wm(t))T is a m-dimensional Brownian motion defined
on the complete probability space (Ω, F , {Ft}t≥0, P), with Ω
being the sample space, F being a sigma-algebra, {Ft}t≥0
being a filtration and satisfies the usual conditions and P being
a complete probability measure. r(t) is a right-continuous
Markov process on the probability space taking values in a finite
state space S = {1, 2, · · · , N} with generator Π = {πij}N×N
given by

P {r(t+∆)=j | r(t)= i}=

{
πij∆+o(∆), i ̸=j
1+πii∆+o(∆), i=j

(2)

where ∆ > 0 is a sufficiently small positive number, and
lim∆→0(o(∆)/∆) = 0. πij ≥ 0 is the transition rate from i to

j (j ̸= i), and πii = −
∑N

j=1,j ̸=i πij . Let π̄ ∆
= maxi∈S{|πii|}

and π̃
∆
= maxi,j∈S{πij} and assume the Markov process r(t) is

independent of the Brownian motion w(t).
In addition, in system (1), ν(t) ∈ Ll

∞ is the asynchronous
control input, which relies on the detected switching signal
r′(t). Ll

∞ denotes the set of all the measurable and locally
essentially bounded input ν(t) ∈ Rl on [0,∞) with the norm

⎧
⎨

⎩

∥ν(s)∥ = inf
A⊂Ω,P(A)=0

sup {|ν(ω, s)| : ω ∈ Ω \ A}

∥ν(s)∥[t0,∞) = sup
s∈[t0,∞)

∥ν(s)∥ (3)

u(t)∈Lk
∞ is the reference input. Moreover, f :R+×C([−τ, 0];

Rn)×S×Rl→Rn, g : R+×C([−τ, 0]; Rn)×S×Rl→Rn×m

and h : R+ × C([−τ, 0]; Rn) × Rk × S → Rl are measurable
functions with f(t, 0, 0, i) ≡ 0, g(t, 0, 0, i) ≡ 0 and h(t, 0, 0,
i) ≡ 0 for any i ∈ S . Let

f̄ (t, xt, u, r̄(t)) = f̄ (t, xt, u, r(t), r′(t))

= f (t, xt, h (t, xt, u, r′(t)) , r(t))

ḡ (t, xt, u, r̄(t)) = ḡ (t, xt, u, r(t), r′(t))

= g (t, xt, h (t, xt, u, r′(t)) , r(t)) .

For convenience, let f̄ij(t, xt, u(t)) and ḡij(t, xt, u(t)) de-
note f̄(t, xt, u(t), i, j) and ḡ(t, xt, u(t), i, j), respectively, for
any i, j ∈ S . Specifically, when i = j, the mode-dependent
controller and the system operate synchronously, while when
i ̸= j, they operate asynchronously. Due to ν(t) relies not on
r(t) but on r′(t), when r′(t) ̸= r(t), i.e, on the asynchronous
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time interval, the designed controller is an mismatched one
for the controlled system, which may cause the degradation of
control loop performance and even make it unstable. The sta-
bility of the control system with the existence of asynchronous
switching will be our main concern.

In the paper, it is also assumed that f̄ , ḡ satisfy the local
Lipschitz condition and the linear growth condition, hence for
the closed-loop system

dx(t) = f̄ (t, xt, u(t), r(t), r′(t)) dt

+ ḡ (t, xt, u(t), r(t), r′(t)) dw(t) (4)

there exists an unique solution on t ≥ −τ .
In the next, we make some definitions for the Markov process

r(t) and the detected switching signal r′(t). Firstly, r(t) is as-
sumed to be a regular Markov process with standard transition
probability matrix. Let the sequence {tl}l≥0 denote the switch-
ing instants sequence of r(t), and r(tl) = il, t0 = 0. When
il = i, tl+1 − tl is called the sojourn-time of Markov process
in mode i. As usual, the sojourn-time sequence {tl+1 − tl}l≥0

belongs to an exponential distribution with rate parameter λ(i),
where 0 ≤ λ(i) < ∞ is the transition rate of r(t) in mode i.
Further, for all i, j ∈ S and i ̸= j, E{tl+1 − tl|il = i, il+1 =
j} = 1/λ(i), where λ(i) denotes the reciprocal of the average
sojourn-time of Markov process r(t) in mode i. According to
(2), we also have λ(i) = −πii. On the other hand, the detected
switching r′(t) is considered as r′(t) = r(t − d(t)), and it is the
only switching signal which can be obtained and used by the
controller. Let {t′l}l≥0 denote the switching instants sequence
of r′(t). As in [9], the following statements are assumed to
describe the characteristic of r′(t). When r(t) jumps from i
to j, r′(t) follows r(t) with a delay and this delay is also an
independent exponentially distributed random variable with the
mean 1/π0

ij , and

P
{

r′(t + ∆) = j| r′(s) = i, s ∈ [t∗, t]

r(t∗) = j, r(t∗−) = i

}

=

{
π0

ij∆ + o(∆), i ̸= j
1 + π0

ii∆ + o(∆), i = j
. (5)

Clearly, when letting π0
ij → ∞, the detection is instanta-

neous. It is assumed that π0
ij is sufficiently large and 0 ≤ d(t) ≤

d ≤ inf{tl+1 − tl}. Further, r′(t) is causal, meaning that the
ordering of the switching instants of r′(t) is the same as the
ordering of the corresponding switching instants of r(t). Thus,
it follows that 0 = t0 = t′0 < t1 ≤ t′1 < t2 ≤ t′2 < · · · < tl≤
t′l < tl+1 < · · ·, where t′l = tl + d(tl) for any l ≥ 1. Define a
virtual switching signal r̄(t), from [0,∞) to S × S , by r̄(t) =
(r(t), r′(t)). Let {t̄l}l≥0 denote the switching instants of r̄(t).
Then, for any l ≥ 1, t̄0 = t′0 = t0, t̄2l−1 = tl and t̄2l = t′l.

Remark 2.1:

(i) In [9], the detection process is described by both non-zero
detection delay and false alarms due to environmental
noises, disturbances, and small modelling uncertainties,
etc. The false alarm is assumed to be an independent
exponential distribution with rate π1

ij . However, the ex-
istence of false alarms increases the difficulty and com-

plexity of the closed-loop systems, and therefore this
issue is out of the scope of this paper. However, this issue
together with non-zero detection delay are our ongoing
work.

(ii) Various algorithms exist for the detection of Markovian
switching signal. In this paper, we choose the method
discussed in [9], referred to as the optimal minimum
probability of error bayesian detector. As in [9], r′(t) is
assumed to have the similar characteristics as r(t), and
hence, r′(t) is regarded as a conditional Markov process.
For r′(t), non-Markovian conditional switches can also
be our future work.

To prove the main results, the following lemma is required.
Lemma 2.1: For any given V (x(t), t, r(t), r′(t)) ∈

C2,1(Rn × R+ × S × S; R+), associated with system (4), the
diffusion operator LV , from C([−τ, 0]; Rn) × R+ × S × S to
R, can be described as follows.

Case 1) When r′(t) = r(t) = i, then

LV (xt, t, i, i)

= Vt (x(t), t, i, i) + Vx (x(t), t, i, i) f̄ii(t, xt, u)

+
1

2
trace

[
ḡT

ii(t, xt, u)Vxx (x(t), t, i, i) ḡii(t, xt, u)
]

+
N∑

k=1

πikV (x(t), t, k, i) . (6)

Case 2) When r′(t) = i, r(t) = j and j ̸= i, then

LV (xt, t, j, i)

= Vt (x(t), t, j, i) + Vx (x(t), t, j, i) f̄ji(t, xt, u)

+
1

2
trace

[
ḡT

ji(t, xt, u)Vxx (x(t), t, j, i) ḡji(t, xt, u)
]

+ π0
ijV (x(t), t, j, j) − π0

ijV (x(t), t, j, i) . (7)

Remark 2.2: Lemma 2.1 is from (2) in [44] and Lemma 3 in
[40]. When r′(t) ≡ r(t) for all t ≥ 0, (6) is the same as (2) in
[44]. Otherwise (6) and (7) are similar to the ones in Lemma 3
in [40]. Lemma 3 in [40] considers also false alarms of r′(t).
In this paper, the causality of r′(t) means Π1 = {π1

ij}N×N
= 0

and (6) follows.

III. GLOBAL ASYMPTOTIC STABILITY

From the definition of ISS, an ISS system is GAS if the input
u ≡ 0. Therefore, the GAS property is useful for ISS. In this
section, GAS in probability and in pth moment are considered.

To begin with, a useful lemma is stated as follows.
Lemma 3.1: Let V (t)=eλtV (x(t), t, r̄(t))=eλtV (x(t), t,

r(t), r′(t)) for all t ≥ 0 and λ ≥ 0, then

D+E {V (t)} = E {LV (t)}

=λE {V (t)} + eλtE {LV (xt, t, r(t), r
′(t)))}

(8)

where D+E{V (t)}=lim supdt→0+((E{V (t+dt)}−E{V (t)})/dt).
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Proof: Firstly, for any k1, k2 ∈ S , it follows

E {V (t + dt)|x(t), r(t) = k1, r
′(t) = k2, t}

= E {V (t) + λV (t)dt|x(t), r(t) = k1, r
′(t) = k2, t}

+E
{
eλtVt (x(t), t, r̄(t)) dt|x(t), r(t) = k1, r

′(t) = k2, t
}

+E
{

eλtVx (x(t), t, r̄(t)) f̄ (t, xt, u, r̄(t)) dt +
1

2
eλttrace

×
[
ḡT (t, xt, u, r̄(t))Vxx(x(t), t, r̄(t))×ḡ(t, xt, u, r̄(t))

]

×dt|x(t), r(t) = k1, r
′(t) = k2, t}

+ E
{
eλtV (x(t), t, r(t + dt), r′(t))

+ eλtV (x(t), t, r(t), r′(t + dt)) |x(t), r(t) = k1,

r′(t) = k2, t} + o(dt) (9)

which is in accordance with Lemma 2.1. We complete the proof
by considering the following two cases: r(t) = r′(t) = i and
r′(t) = i, r(t) = j, respectively, where i, j ∈ S and j ̸= i.

Case 1. r′(t) = r(t) = i. In this case, only the true mode
switches may occur. Using the conclusion in [9], it follows

E
{
eλtV (x(t), t, r(t + dt), r′(t)) |x(t), r(t) = r′(t) = i, t

}

=
N∑

j=1

πij

[
eλtV (x(t), t, j, i) − eλtV (x(t), t, i, i)

]
dt

=
N∑

j=1

πije
λtV (x(t), t, j, i) dt

E
{
eλtV (x(t), t, r(t), r′(t + dt)) |x(t), r(t) = r′(t) = i, t

}

= π1
ii

[
eλtV (x(t), t, i, i) − eλtV (x(t), t, i, i)

]
dt = 0.

Then,

E {V (t + dt)|x(t), r′(t) = r(t) = i, t}

= E {V (t)|x(t), r′(t) = r(t) = i, t}

+
[
λeλtV (x(t), t, i, i) + eλtLV (xt, t, i, i)

]
dt + o(dt)

(10)

where LV (xt, t, i, i) is defined in (6). Taking the expectation
on the both sides of (10),

D+E
{
eλtV (x(t), t, i, i)

}

= E
{
λeλtV (x(t), t, i, i) + eλtLV (xt, t, i, i)

}
. (11)

Case 2. r′(t) = i, r(t) = j. This situation corresponds to
the detection delay, and it is assumed that the true mode r(t)
doesn’t switch during this short time lapse. The only possible
switch is that r′(t) switches from i to j, corresponding to the

end of the transient, and this switch occurs on the average after
1/π0

ij seconds. Then,

E
{

eλtV (x(t), t, r(t + dt), r′(t)) | x(t), r(t) = j

r′(t) = i, t

}

= πjj

[
eλtV (x(t), t, j, i) − eλtV (x(t), t, j, i)

]
dt = 0

E
{

eλtV (x(t), t, r(t), r′(t + dt)) | x(t), r(t) = j

r′(t) = i, t

}

= π0
ij

[
eλtV (x(t), t, j, j) − eλtV (x(t), t, j, i)

]
dt.

Thus, similar to (10), it holds that

D+E
{
eλtV (x(t), t, j, i)

}

= E
{
λeλtV (x(t), t, j, i) + eλtLV (xt, t, j, i)

}
(12)

where LV (xt, t, j, i) in this case is defined in (7).
Combining (11) and (12), and considering the arbitrary of

i, j, it follows (8), for t ≥ 0. Thus we complete the proof. !
Using Lemma 3.1, the criteria of GASiP for system (4) is

obtained.
Theorem 3.1: System (4) with u ≡ 0 is GASiP if there exist

functions α1 ∈ K∞, α2 ∈ CK∞, constants µ ≥ 1, q > 1, λ2,
0< ς<1, and V (x(t), t, r̄(t))∈C2,1(Rn×R+ × S × S; R+),
such that

α1 (|x(t)|) ≤ V (x(t), t, r̄(t)) ≤ α2 (|x(t)|) (13)

and for any l ∈ N+, there exists λ̄1 ∈ (0,λ1) such that

E {LV (ϕ(θ), t, r̄(t))}

≤
{
−λ1E {V (ϕ(0), t, r̄(t))} , t ∈ [t̄2l−2, t̄2l−1)
λ2E {V (ϕ(0), t, r̄(t))} , t ∈ [t̄2l−1, t̄2l)

(14)

provided those ϕ ∈ Lp
Ft

([−τ, 0]; Rn) satisfying that

min
i,j∈S

E {V (ϕ(θ), t + θ, i, j)} < qE {V (ϕ(0), t, r̄(t))} (15)

where

eλ̄1τ < q (16)

and moreover

E {V (x(t̄l), t̄l, r̄(t̄l))} ≤ µE {V (x(t̄l), t̄l, r̄(t̄l−1))} (17)

with some λ̄2 ∈ (λ2,∞) such that

µ2e(λ̄1+λ̄2)dπ̄ − π̃ ≤ ςλ̄1 (18)

Proof: According to (8) in Lemma 3.1, we have

D+E {V (x(t), t, r̄(t))} = E {LV (xt, t, r̄(t))} (19)

for any t ∈ [t̄2l−2, t̄2l−1) ∪ [t̄2l−1, t̄2l), l ∈ N+, with t̄0 = t0 =
t′0 = 0.
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On the one hand, from (13), using Jensen’s inequality, one
can obtain

E {V (x(t), t, i0, i0)} = E {V (x(t), t, r̄(t))}

≤E {α2 (|x(t)|)} ≤ α2 (E {∥ξ∥})

for any t ∈ [t0 − τ, t0]. In the following, we shall prove that

E {V (x(t), t, i0, i0)} ≤ α2 (E {∥ξ∥}) e−λ̄1(t−t0) (20)

for t ∈ [t̄0, t̄1) = [t0, t1). Suppose (20) is not true, i.e., there
exists some t ∈ (t0, t1) such that

E {V (x(t), t, i0, i0)} > α2 (E {∥ξ∥}) e−λ̄1(t−t0) (21)

Let t∗=inf{t∈(t0, t1) :E{V (x(t), t, i0, i0)}>α2(E{∥ξ∥})
e−λ̄1(t−t0)}.

Then t∗ ∈(t0, t1) and E{V (x(t∗), t∗, i0, i0)}=α2(E{∥ξ∥})
e−λ̄1(t∗−t0). Further, there exists a sequence {t̃n} (t̃n ∈ (t∗, t1),
for any n ∈ N+) with limn→∞ t̃n = t∗, such that

E
{
V
(
x(t̃n), t̃n

)
, i0, i0

}
> α2 (E {∥ξ∥}) e−λ̄1(t̃n−t0). (22)

From the definition of t∗, for any θ ∈ [−τ, 0], it follows

E{V (x(t∗+ θ), t∗+ θ, i0, i0)}≤ e−λ̄1θE{V (x(t∗), t∗, i0, i0)}

≤ eλ̄1τE {V (x(t∗), t∗, i0, i0)}

and further, for θ ∈ [−τ, 0]

min
i,j∈S

E{V (x(t∗+ θ), t∗+ θ, i, j)}<qE {V (x(t∗), t∗, i0, i0)} .

Thus, from (14) and (19), we obtain

D+E {V (x(t∗), t∗, i0, i0)} ≤ −λ1E {V (x(t∗), t∗, i0, i0)}

< −λ̄1E {V (x(t∗), t∗, i0, i0)} .

Then, for h > 0 which is sufficient small, it holds

D+E {V (x(t∗), t∗, i0, i0)} ≤ −λ̄1E {V (x(t∗), t∗, i0, i0)}

for t ∈ [t∗, t∗ + h].
Hence,

E{V (x(t∗+ h), t∗+ h, i0, i0)}≤E{V (x(t∗), t∗, i0, i0)}e−λ̄1h

which is a contradiction to (22). Therefore, (20) holds. Com-
bining the continuity of function V (x(t), t, i0, i0) and (17),
we have

E {V (x(t̄1), t̄1, r̄(t̄1))}≤µE {V (x(t̄1), t̄1, r̄(t̄0))}

≤µα2 (E {∥ξ∥}) e−λ̄1(t1−t0). (23)

Let W (t, r̄(t)) = eλ̄1tV (x(t), t, r̄(t)). In the sequel, we will
show that for any t ∈ [t̄2l−1, t̄2l+1)

E {W (t, r̄(t))} ≤ µE {W (t̄2l−1, r̄(t̄2l−1))} e(λ̄1+λ̄2)d. (24)

The following three cases are considered: t ∈ [t̄2l−1, t̄2l), t =
t̄2l and t ∈ (t̄2l, t̄2l+1).

First, when t ∈ [t̄2l−1, t̄2l), we claim that

E {W (t, r̄(t))} ≤ µE {W (t̄2l−1, r̄(t̄2l−1))} e(λ̄1+λ̄2)(t−t̄2l−1).

(25)

Suppose (25) is not true. Then, there exists some t∈ [t̄2l−1, t̄2l)
such that

E {W (t, r̄(t))} > µE {W (t̄2l−1, r̄(t̄2l−1))} e(λ̄1+λ̄2)(t−t̄2l−1).

Let t∗=inf{t∈ [t̄2l−1, t̄2l) :E{W (t, r̄(t̄2l))}>µE{W (t̄2l−1,
r̄(t̄2l−1))}e(λ̄1+λ̄2)(t−t̄2l−1)}, thus

E{W (t∗, r̄(t̄2l))}=µE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t∗−t̄2l−1).

Considering the continuity, there exists a list of sequence
{t̃n}n∈N+

∈ (t∗, t̄2l) with limn→∞ t̃n = t∗ such that

E
{
W

(
t̃n, r̄(t̄2l)

)}

> µE {W (t̄2l−1, r̄(t̄2l−1))} e(λ̄1+λ̄2)(t̃n−t̄2l−1). (26)

Define U(t) = e−(λ̄1+λ̄2)tE{W (t, r̄(t))}, then

D+U(t) = −λ̄2e
−λ̄2tE {V (x(t), t, r̄(t))}

+e−λ̄2tD+E {V (x(t), t, r̄(t))} .

From the definition of t∗, for any θ ∈ [−τ, 0], it follows

µE {W (t̄2l−1, r̄(t̄2l−1))} e(λ̄1+λ̄2)(t∗+θ−t̄2l−1)

= E {W (t∗, r̄(t̄2l−1))} e(λ̄1+λ̄2)θ

≥ E {W (t∗ + θ, r̄(t̄2l−1))}

which means

E {V (x(t∗ + θ), t∗ + θ, r̄(t̄2l−1))}
≤ E {V (x(t∗), t∗, r̄(t̄2l−1))} eλ̄2θ

≤ E {V (x(t∗), t∗, r̄(t̄2l−1))} . (27)

Hence

min
i,j∈S

E{V (x(t∗+θ), t∗+θ, i, j)}<qE{V (x(t∗), t∗, r̄(t̄2l−1))} .

Then

D+U(t∗) = − λ̄2e
−λ̄2t∗E {V (x(t∗), t∗, r̄(t̄2l−1))}

+ e−λ̄2t∗D+E {V (x(t∗), t∗, r̄(t̄2l−1))}
≤ − (λ̄2 − λ2)e

−λ̄2t∗E {V (x(t∗), t∗, r̄(t̄2l−1))} .

Note that either E{V (x(t∗), t∗, r̄(t̄2l−1))}=0 or E{V (x(t∗),
t∗, r̄(t̄2l−1))}>0. In the case E{V (x(t∗), t∗, r̄(t̄2l−1))}=0, we
have x(t∗)=0 a.s. From (27) and (13), we have x(t∗+θ)=0
a.s. for any θ ∈ [−τ, 0]. Recalling that h(t∗, 0, 0, r′(t̄2l−1)) = 0,
f(t∗, 0, 0, r(t̄2l−1)) = 0 and g(t∗, 0, 0, r(t̄2l−1)) = 0, hence
f̄(t∗, 0, 0, r̄(t̄2l−1)) = 0 and g(t∗, 0, 0, r̄(t̄2l−1)) = 0. Thus,
one sees that x(t∗ + h) = 0 a.s., for all h > 0, i.e., E{W (t∗ +
h, r̄(t̄2l−1))} = 0, which is a contradiction of (26). On the other
hand, in the case E{V (x(t∗), t∗, r̄(t̄2l−1))} > 0, there exists a
positive number h which is sufficient small such that D+U(t) ≤
0, for all t ∈ [t∗, t∗ + h], which means

E {W (t∗ + h, r̄(t̄2l−1))} ≤ e(λ̄1+λ̄2)hE {W (t∗, r̄(t̄2l−1))}
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and it is a contradiction to (26). Therefore, (25) holds. Further,
(24) holds on t ∈ [t̄2l−1, t̄2l).

By considering the continuity of W (t, r̄(t̄2l−1)) at time t =
t̄2l, it follows

E {W (t̄2l, r̄(t̄2l))} ≤ µE {W (t̄2l−1, r̄(t̄2l−1))} e(λ̄1+λ̄2)d.

Following the similar analysis on interval (t̄2l−1, t̄2l), one
can prove that (24) holds on (t̄2l, t̄2l+1), and then it holds on
[t̄2l−1, t̄2l+1). Thus,

E {V (x(t), t, r̄(t))} ≤ µE {V (x(t̄2l−1), t̄2l−1, r̄(t̄2l−1))}

×e−λ̄1(t−t̄2l−1) × e(λ̄1+λ̄2)d, t ∈ [t̄2l−1, t̄2l+1) (28)

By considering the continuity of V (x(t), t, r̄(t̄2l)), one can
see that (28) holds at time t̄2l+1, and then,

E {V (x(tl+1), tl+1, r̄(tl+1))}

≤ µ2E {V (x(tl), tl, r̄(tl))} e−λ̄1(tl+1−tl)e(λ̄1+λ̄2)d. (29)

For any t ≥ t̄1 = t1, iterating (28) from l = 1 to l =
Nr(t, t1) + 1, one can obtain

E {V (x(t), t, r̄(t))}
≤ µ2E

{
V
(
x
(
tNr(t,t1)+1

)
, tNr(t,t1)+1, r̄

(
tNr(t,t1)+1

))}

× e(λ̄1+λ̄2)de−λ̄1(t−tNr(t,t1)+1)

= E
{

µ2(Nr(t,t1)+1−Nr(t,t1))e(Nr(t,t1)+1−Nr(t,t1))(λ̄1+λ̄2)d
}

× E
{
V
(
x
(
tNr(t,t1)+1

)
, tNr(t,t1)+1, r̄

(
tNr(t,t1)+1

))}

× e−λ̄1(t−tNr(t,t1)+1)

≤ E
{

µ2(Nr(t,t1)+1−Nr(t,t1))e(Nr(t,t1)+1−Nr(t,t1))(λ̄1+λ̄2)d
}

×µ2e(λ̄1+λ̄2)dE
{
V
(
x
(
tNr(t,t1)

)
, tNr(t,t1), r̄

(
tNr(t,t1)

))}

× e−λ̄1(t−tNr(t,t1))

= E
{

µ2(Nr(t,t1)+2−Nr(t,t1))e(Nr(t,t1)+2−Nr(t,t1))(λ̄1+λ̄2)d
}

× E
{
V
(
x
(
tNr(t,t1)

)
, tNr(t,t1), r̄

(
tNr(t,t1)

))}

× e−λ̄1(t−tNr(t,t1))

≤ · · ·

≤ E
{

µ2(Nr(t,t1)−2)e(Nr(t,t1)−2)(λ̄1+λ̄2)d
}

µ2e(λ̄1+λ̄2)d

× E {V (x(t2), t2, r̄(t2))} e−λ̄1(t−t2)

= E
{

µ2(Nr(t,t1)−1)e(Nr(t,t1)−1)(λ̄1+λ̄2)d
}

× E {V (x(t2), t2, r̄(t2))} e−λ̄1(t−t2)

≤ E
{

µ2(Nr(t,t1)−1)e(Nr(t,t1)−1)(λ̄1+λ̄2)d
}

µ2e(λ̄1+λ̄2)d

× E {V (x(t1), t1, r̄(t1))} e−λ̄1(t−t1)

= E
{

µ2Nr(t,t1)eNr(t,t1)(λ̄1+λ̄2)d
}

× E {V (x(t1), t1, r̄(t1))} e−λ̄1(t−t1). (30)

Combining (23) with (30), we arrive at

E {V (x(t), t, r̄(t))} ≤ E
{

µ2Nr(t,0)e(λ̄1+λ̄2)Nr(t,0)d
}

×α2 (E {∥ξ∥}) e−λ̄1t (31)

for any t ≥ t0 − τ . According to Lemma 6 in [45], let s =
2 ln(µ) + (λ̄1 + λ̄2)d, there exists a positive number M > 0
such that

e−ςλ̄1tE
{

µ2Nr(t,0)e(λ̄1+λ̄2)Nr(t,0)d
}

≤ Me−ςλ̄1t + e[µ
2e(λ̄1+λ̄2)dπ̄−π̃−ςλ̄1]t.

When ςλ̄1 ≥ µ2e(λ̄1+λ̄2)dπ̄ − π̃, we have

e−ςλ̄1tE
{

µ2Nr(t,0)e(λ̄1+λ̄2)Nr(t,0)d
}
≤ M + 1 < ∞.

Then,

E {V (x(t), t, r̄(t))} ≤ M̄e−(1−ς)λ̄1tα2 (E {∥ξ∥})
∆
= β̄ (E {∥ξ∥} , t) (32)

for any M + 1 ≤ M̄ < ∞. It’s no difficulty to verify β̄(·, ·) ∈
KL when 0 < ς < 1.

Then, for any ε > 0, take β̃ = β̄/ε. Obviously, β̃(·, ·) ∈ KL.
Using Chebyshev’s inequality, we have

P
{

V (x(t), t, r̄(t)) ≥ β̃ (E {∥ξ∥} , t)
}

≤ E {V (x(t), t, r̄(t))}
β̃ (E {∥ξ∥} , t)

< ε

i.e.,

P {|x(t)| < β (E {∥ξ∥} , t)} ≥ 1 − ε

where β(r, s) = α−1
1 ◦ β̃(r, s) ∈ KL. Thus, we complete the

proof. !
Remark 3.1:
(i) Assumption (14) is widely used in Razumikhin-type

stability criterion and imposes less restrictions on the
functions f̄(t,ϕ(θ), u(t), r̄(t)) and ḡ(t,ϕ(θ), u(t), r̄(t)),
as described in [43]. When t ∈ [t̄2l−1, t̄2l), condition (14)
corresponds to the asynchronous case and λ2 may or
may not be positive. In what follows, λ2 is assumed
to positive, and λ1 and λ2 denote the minimal stability
margin and maximal instability margin, respectively.

(ii) In Theorem 3.1, condition (18) is given to guarantee the
stability. Indeed, for any i ∈ S , there may exist a mis-
matched period. Those mismatched period are usually
bounded with d < ∞. In this case, a larger mode sojourn-
time is more appropriate. Based on (18), for fixed λ1, µ
and ς , a larger instability margin λ2 or a larger upper
bound on detection delay d can be compensated by a
smaller π̄. By considering π̄ = maxi∈S{|πii|}, one can
obtain a smaller π̄ by decreasing |πii|. Then the sojourn-
time of r(t) in mode i, E{tl+1 − tl|il = i, il+1 = j} =
1|πii|. Furthermore, one can claim that the average value
of the sojourn-time of r(t) is less than or equal to 1/π̄,
and, the smaller π̄ is the larger the sojourn-time is. Thus,
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the stability of the hybrid stochastic retarded systems
under asynchronous switching can be guaranteed by a
sufficient small detection delay and a sufficient small
mode transition rate π̄. This result has a similar spirit as
for asynchronous deterministic switched systems based
on average dwell time approach where the closed-loop
stability can be guaranteed by a sufficient large average
dwell time.

The following two corollaries can be obtained directly from
Theorem 3.1 and its proof. Their proofs are omitted.

Corollary 3.1: System (4) under a strictly synchronous con-
troller ν(t) with u ≡ 0 is GASiP if µ < ((λ1 + π̃)/π̄), and the
conditions (13)–(17) hold.

Remark 3.2: The similar conclusion can be seen in Corollary
12 in [45], which considers the GAS a.s. of a class of Markovian
switching nonlinear systems. Corollary 3.1 provides a sufficient
criterion in stochastic case with retarded delays.

Corollary 3.2: Under the assumptions in Theorem 3.1, sys-
tem (4) with u ≡ 0 is also α1-GASiM. Specially, if α1 ∈ VK∞,
system (4) with u ≡ 0 is GASiM. Furthermore, if α1(s) =
c1sp, α2(s) = c2sp, where c1 and c2 are positive numbers,
system (4) with u ≡ 0 is pth moment exponentially stable.

IV. INPUT-TO-STATE STABILITY

In this section, based on the conclusions in Theorem 3.1, we
will provide the sufficient conditions of SISS and pth moment
ISS for system (4).

Theorem 4.1: System (4) is SISS, if (13), (17) and (18) hold
and there exist functions α1 ∈ K∞, α2 ∈ CK∞, χ ∈ K, scalers
µ ≥ 1, q > 1, λ1 > 0, λ2, 0 < ς < 1 and V (x(t), t, r̄(t)) ∈
C2,1(Rn × R+ × S × S; R+), such that for any l ∈ N+,

|ϕ(0)| ≥χ
(
∥u∥[0,∞)

)
⇒ E {LV (ϕ(θ), t, r̄(t))}

≤
{
−λ1E {V (ϕ(0), t, r̄(t))} , t ∈ [t̄2l−2, t̄2l−1)
λ2E {V (ϕ(0), t, r̄(t))} , t ∈ [t̄2l−1, t̄2l)

provided thoseϕ∈Lp
Ft

([−τ, 0]; Rn) satisfying that (15) and (16).
Proof: Let the time sequences {ti}i≥1 and {t̃i}i≥1 denote

the time that the trajectory enters and leaves the set B =
{ϕ ∈ Lp

Ft
([−τ, 0]; Rn) : |ϕ(0)| < χ(∥u∥[t0,∞))}, respectively.

In the following, we will complete the proof by considering the
following two cases: ξ ∈ BC and ξ ∈ B \ {0}, respectively.

Case 1. ξ ∈ BC . In this case, for any t ∈ [0, t1), |x(t)| ≥
χ(∥u∥[0,∞)). According to Theorem 3.1, for any ε′ > 0, there
exists a KL function β such that

P {|x(t)| < β (E {∥ξ∥} , t)} ≥ 1 − ε′, ∀t ∈ [0, t1). (33)

Now consider the interval t ∈ [t1,∞). Define t̃1 = inf{t >
t1 : |x(t)| ≥ χ(∥u∥[t0,∞))}, and inf ∅ = ∞. Clearly, for any
t ∈ [t1, t̃1), we have

P
{
|x(t)| < χ

(
∥u∥[0,∞)

)}
= 1 ≥ 1 − ε′′, ∀ε′′ > 0. (34)

Define t2 = min{t ≥ t̃1 : |x(t)| < χ(∥u∥[t0,∞))}. Accord-
ing to Theorem 3.1, we also have

P
{
|x(t)| < β

(
x(t̃1), t − t̃1

)}
≥ 1 − ε′, ∀t ∈ [t̃1, t2).

Similarly, for any i ≥ 2, we define
{

ti = min
{
t ≥ t̃i−1 : |x(t)| < χ

(
∥u∥[t0,∞)

)}

t̃i = inf
{
t > ti : |x(t)| ≥ χ

(
∥u∥[t0,∞)

)}

By repeating the above induction, for any i ≥ 1, when t ∈
[ti, t̃i), we can obtain

P
{
|x(t)| < χ

(
∥u∥[t0,∞)

)}
= 1 ≥ 1 − ε′′

and when t ∈ [t̃i, ti+1)

P
{
|x(t)| < β

(
E
{∣∣x(t̃i)

∣∣} , t − t̃i
)}

≥ 1 − ε′

From the proof of Theorem 3.1, the KL function β(r, s)
satisfies

β(r, s) ≤ α−1
1

(
M̄e−λ3sα2(r)

)

for some M̄ ≥ 0, where λ3 ∈ (0, (1 − ς)λ̄1). Since α1 ∈ K∞,
further, we can get

β(r, s) ≤ α−1
1

(
M̄α2(r)

)

Thus, for any i ≥ 1, when t ∈ [ti, t̃i)

P
{
|x(t)| < χ

(
∥u∥[t0,∞)

)}
= 1 ≥ 1 − ε′′ (35)

and when t ∈ [t̃i, ti+1),

P
{
|x(t)| < α−1

1

(
M̄α2

(
E
{∣∣x(t̃i)

∣∣}))}

≥ P
{
|x| < β

(
E
{∣∣x(t̃i)

∣∣} , t − t̄i
)}

≥ 1 − ε′ (36)

Considering the continuity of x(t), we have

E
{∣∣x(t̃i)

∣∣} < χ
(
∥u∥[t0,∞)

)
, a.s. (37)

Substituting (37) into (35) and (36), we obtain

P
{

|x(t)| < γ (∥u∥[0,∞))
}
≥ 1 − ε′′′, ∀t ≥ t1 (38)

where ε′′′ = max{ε′, ε′′}, γ(s) = max{χ(s),α−1
1 (S̄α2(s))}.

It’s easy to verify that γ ∈ K. Then, combining (33) and (38),
we have

P
{
|x(t)| < β (E {∥ξ∥} , t) + γ

(
∥u∥[0,∞)

)}
≥ 1 − ε (39)

for any ξ ∈ BC , t ≥ 0, where ε = max{ε′, ε′′′}.
Case 2. ξ ∈ B \ {0}. In this case, t1 = 0 a.s. When t > 0,

we have P{t ∈ (t1,∞)} = P{t ∈ (t0,∞)} = 1. Following the
proof of Case 1., the inequality (38) still holds. Then

P
{
|x(t)| < β (E {∥ξ∥} , t) + γ

(
∥u∥[0,∞)

)}

≥ P
{
|x(t)| < γ

(
∥u∥[0,∞)

)}
≥ 1 − ε′′′ (40)

for any t ∈ (0,∞). When t = 0, by the definition of the set B
and the definition of γ, we can obtain

P
{
|x(0)| < β (E {∥ξ∥} , 0) + γ

(
∥u∥[0,∞)

)}

≥ P
{
|x(0)| < χ

(
∥u∥[0,∞)

)}
= 1
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which implies, for any ε1 > 0,

P
{
|x(0)| < β (E {∥ξ∥} , 0) + γ

(
∥u∥[0,∞)

)}
≥ 1 − ε1 (41)

Combining (40) and (41), we have

P
{
|x(t)| < β (E {∥ξ∥} , t) + γ

(
∥u∥[0,∞)

)}
(42)

for all t ≥ 0, ξ ∈ B \ {0}, where ε = max{ε′′′, ε1}.
Combining the proof of Case 1. and the proof of Case 2., for

any ε > 0, t ≥ 0 and ξ ∈ Cb
F0

([−τ, 0]; Rn), we have

P
{
|x(t)| < β (E {∥ξ∥} , t) + γ

(
∥u∥[0,∞)

)}
≥ 1 − ε

By causality, we get

P
{
|x(t)| < β (E {∥ξ∥} , t) + γ

(
∥u∥[0,t)

)}
≥ 1 − ε

Thus, we complete the proof. !
Remark 4.1: Since the existence of asynchronous period, if

x(t∗) ∈ B for some t∗ ≥ 0, we cannot guarantee that |x(t)| <
χ(∥u∥[0,∞)) a.s., for any t > t∗. But, from (38), it will be upper
bounded by ∥u∥[0,∞) in probability.

Similar to Corollary 3.2, we have the following results.
Corollary 4.1: Under the hypotheses of Theorem 4.1, system

(4) is also α1-ISSiM. Specially, if α1(s) = c1sp, α2(s) = c2sp,
where c1 and c2 are positive numbers, system (4) is pth moment
ISS.

V. APPLICATION AND EXAMPLE

HSDS, described by stochastic differential delay equations
with Markovian switching, is an important class of hybrid
stochastic retarded systems and is frequently used in engineer-
ing. In this section, the conclusions established in previous
sections are applied to the stability analysis of a class of HSDSs
under asynchronous switching.

Consider the following hybrid system which has been dis-
cussed in [44] and the reference therein
⎧
⎨

⎩

dx(t) = F (t, x(t), x (t − d1 (t, r(t))) , ν(t), r(t)) dt
+G (t, x(t), x (t − d1 (t, r(t))) , ν(t), r(t)) dw(t)

ν(t) = H (t, x(t), u(t), r′(t))
(43)

on t≥0, where d1 :R+×S→ [0, τ ] is Borel measurable while
F , G and H are measurable functions with F (t, 0, 0, 0, i) ≡ 0,
G(t, 0, 0, 0, i) ≡ 0 and H(t, 0, 0, i) ≡ 0, for all t≥0 and i∈S .
Let F̄ (t, x(t), x(t − d1(t, r(t))), u(t), r̄(t)) = F (t, x(t), x(t −
d1(t, r(t))), H(t, x(t), u(t), r′(t)), r(t)), Ḡ(t, x(t), x(t−d1(t,
r(t))), u(t), r̄(t))= G(t, x(t), x(t−d1(t, r(t))),H(t, x(t), u(t),
r′(t)), r(t)), and d1r(t)(t) = d1(t, r(t)). We assume F̄ and Ḡ
satisfy the local Lipschitz condition and the linear growth
condition. Then, the closed-loop system,

dx(t) = F̄ij (t, x(t), x (t − d1i(t)) , u(t)) dt
+ Ḡij (t, x(t), x (t − d1i(t)) , u(t)) dw(t) (44)

has unique solution on t ≥ −τ .
In fact, system (44) is a special case of (4) when f̄ij(t,ϕ(0),

ϕ, u) = F̄ij(t,ϕ(0),ϕ(−d1i(t)), u) and ḡij(t,ϕ(0),ϕ, u) =
Ḡij(t,ϕ(0),ϕ(−d1i(t)), u) for (ϕ, t, i, j) ∈ C([−τ, 0]; Rn) ×
R+ × S × S.

In the following, we use Theorem 4.1 to establish a useful
stability criterion for system (44).

Corollary 5.1: System (44) is SISS if there exist func-
tions α1 ∈ K∞, α2 ∈ CK∞, χ ∈ K, scalars µ ≥ 1, q > 1,
λk > 0, λk1 > 0, k = 1, 2, 0 < ς < 1 and V (x(t), t, r̄(t)) ∈
C2,1(Rn × R+ × S × S; R+), such that (13) and (17) hold and
for any l ∈ N+,

LV (x(t), y1(t), t, r̄(t))

≤ −λ1V (x(t), t, r̄(t))

+ λ11 min
m,n∈S

{V (y1(t), t − d1il(t), m, n)}

+ χ
(
∥u∥[0,∞)

)
, t ∈ [t̄2l−2, t̄2l−1) (45)

and

LV (x(t), y1(t), t, r̄(t))

≤ λ2V (x(t), t, r̄(t))

+ λ21 min
m,n∈S

{V (y1(t), t − d1il(t), m, n)}

+ χ
(
∥u∥[0,∞)

)
, t ∈ [t̄2l−1, t̄2l) (46)

where y1(t) = x(t − d1(t, r(t))); and there exists λ0 > 0, and
λ̄1 = λ1 − qλ11 − λ0 > 0, λ̄2 = λ2 + qλ21 + λ0 > 0, λ̂1 ∈
(0, λ̄1) and λ̂2 ∈ (λ̄2,∞) such that

eλ̂1τ ≤ q (47)

and

µ2π̄e(λ̂1+λ̂2)d − π̃ ≤ ςλ̂1 (48)

Proof: From (45) and (46), there exists 0 < λ0 < λ1 such
that

|x(t)| ≥ χ̄
(
∥u∥[0,∞)

)
⇒ LV (x(t), y1(t), t, r̄(t))

≤λ11 min
m,n∈S

V (y1(t), t − d1il(t), m, n)

− λ̃1V (x(t), t, r̄(t)) , t ∈ [t̄2l−2, t̄2l−1) (49)

and

|x(t)| ≥ χ̄
(
∥u∥[0,∞)

)
⇒ LV (x(t), y1(t), t, r̄(t))

≤λ21 min
m∈S

V (y1(t), t − d1il(t), m, n)

+ λ̃2V (x(t), t, r̄(t)) , t ∈ [t̄2l−1, t̄2l) (50)

for any l ≥ 0, where λ̃1 = λ1 − λ0 > 0, λ̃2 = λ2 + λ0, and
χ̄(s) = λ−1

0 α−1
1 ◦ χ(s). Clearly, χ̄(·) ∈ K. By using Fatou’s

lemma, we have

|x(t)| ≥ χ̄
(
∥u∥[0,∞)

)
⇒ E {LV (x(t), y1(t), t, r̄(t))}

≤ − λ̄1E {V (x(t), t, r̄(t))} , t ∈ [t̄2l−2, t̄2l−1)

and

|x(t)| ≥ χ̄
(
∥u∥[0,∞)

)
⇒ E {LV (x(t), y1(t), t, r̄(t))}

≤ λ̄2E {V (x(t), t, r̄(t))} , t ∈ [t̄2l−1, t̄2l)

whenever (15) holds. Thus, all the conditions in the Theorem
4.1 are satisfied, which means system (44) is SISS. !
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Corollary 5.2: Under the hypotheses of Corollary 5.1, sys-
tem (44) is also α1-ISSiM. Specially, if α1(s) = c1sp, α2(s) =
c2sp, where c1 and c2 are positive numbers, system (44) is pth
moment ISS.

From the definitions of SISS and pth moment ISS, a SISS/pth
moment ISS system is GASiP/pth moment stable if the input
u = 0. A pth moment ISS system is also SISS. Therefore, in
what follows we give only the conditions of the pth moment
ISS for a class of asynchronous HSDSs.

Consider the following system,

dx(t) = [A (r(t)) x(t) + B (r(t)) ν(t)

+f (t, x (t − d1 (t, r(t))) , r(t))] dt

+[C(r(t)) x(t)+g(t, x(t−d1 (t, r(t))) , r(t))] dw(t)

(51)

where x(t) ∈ Rn, ν(t) ∈ Ll
∞. (For such system, the linear case

with constant delay has been discussed in [46] and the reference
therein.) Assume that |f(t, x(t−d1(t, r(t))), r(t))|≤∥U1(r(t))
∥x(t− d1(t, r(t)))|, |g(t, x(t− d1(t, r(t))), r(t))| ≤∥U2(r(t))
∥x(t − d1(t, r(t)))|.

The mode-dependent controller is designed as

ν(t) = K (r′(t)) x(t) + u(t) (52)

where u(t) is the reference input. For convenience, when r(t) =
i, for any operate h, let hi denote h(i), and y1(t) = x(t −
d1i(t)). Then, the closed-loop system is

dx(t) = [Aix(t) + BiKjx(t) + Biu(t) + fi (t, y1(t))] dt

+ [Cix(t) + gi (t, y1(t))] dw(t) (53)

Taking V (x(t), r̄(t)) = xT (t)P (r̄(t))x(t), where P (r̄(t)) =
PT (r̄(t)) > 0, if for some εi > 0, i = 1, 2, 3, such that

⎡

⎣
Σ111 Σ112 Σ113

∗ Σ122 Σ123

∗ ∗ Σ133

⎤

⎦ < 0 (54)

[
Σ211 Xii

∗ −λ11Xii

]
< 0 (55)

⎡

⎣
Σ311 Σ312 Σ313

∗ Σ322 Σ323

∗ ∗ Σ333

⎤

⎦ < 0 (56)

[
Σ411 Xij

∗ −λ21Xij

]
< 0 (57)

where Xii =P−1
ii , Xij =P−1

ij , Pii <β1I and Pij <β2I , Σ111 =
(1/β2πii)I , Σ112 = Xii, Σ113 = 0, Σ122 = −(1/1 + ε3)Xii,
Σ123 =CiXii, Σ133 = XiiAT

i + AiXii + 2BiYii + πiiXii +
ε1BiBT

i +ε2I + λ1Xii, Σ211 =−(ε−1
2 ∥U1i∥2I + (1 + ε−1

3 )β1

∥U2i∥2I)−1I , Σ311 = −(1/π0
ji)Xii, Σ312 = Xij , Σ313 = 0,

Σ322 = −(1/1 + ε3)Xij , Σ323 = CiXij , Σ333 = XijAT
i +

AiXij +2BiKjXij−π0
jiXij+ε1BiBT

i +ε2I−λ2Xij , Σ411 =

−(ε−1
2 ∥U1i∥2I + (1 + ε−1

3 )β2∥U2i∥2I)
−1

I .

Let χ(s) = ε−1
1 s2, and if there exists µ ≥ 1, q > 1, λ0 > 0,

such that (17), (47), (48) hold, where λ̄1 =λ1−qλ11 − λ0 > 0,
λ̄2 = λ2 + qλ21 + λ0 > 0, λ̂1 ∈ (0, λ̄1) and λ̂2 ∈ (λ̄2,∞).

Then from Corollary 5.2, system (53) is 2th moment ISS. For
more details, see Appendix A.

For the stability analysis of given system (51) with asyn-
chronous controller (52), we first obtain µ, λ1, λ2, λ11 and λ21,
which meet the conditions of Corollary 5.2. If there exist ε1,
ε2, ε3, β1 and β2, such that (54) and (55) hold, then we can
obtain Pii and the candidate controllers gains Ki, where i ∈ S .
To verify the effectiveness of the candidate controllers, we need
to solve (56), (57) and (17). If a feasible solution exists, then
one can obtain Pij and the admissible controllers gains, where
i, j ∈ S , j ̸= i.

Example 5.1: To demonstrate the effectiveness, we choose
the parameters in system (53) as A1 = [1.5, 1.5; 0,−3], A2 =
[−0.5, 10; 15, 2.5], B1 = [−1, 2; 0,−1], B2 = [−2, 1; 0, 2],
C1 = [0.1, 0; 0, 0.1], C2 = [0.2, 0; 0.1, 0.2], and

f1 (t, y1(t)) =

[
0.1 cos(t) 0.1

0 −0.1 sin(t

]
y1(t)

f2 (t, y1(t)) =

[
0.1 (cos(t))2 0

0 0.1 sin(t)

]
y1(t)

g1 (t, y1(t)) =

[
0.1 cos(t) 0

0 −0.1 sin(t)

]
y1(t)

g2 (t, y1(t)) =

[
0.1 cos(t) 0

0.1 0.1 (sin(t))2

]
y1(t)

Then, we have |f1(t, y1(t))| ≤ ∥U11∥|y1(t)|, |f2(t, y1(t))| ≤
∥U12∥|y1(t)|, |g1(t, y1(t))| ≤ ∥U21∥|y1(t)|, |g2(t, y1(t))| ≤
∥U22∥|y1(t)|, where U11 = [0.1, 0.1; 0,−0.1], U12 = [0.1, 0;
0, 0.1], U21 = [0.1, 0; 0,−0.1], U22 = [0.1, 0; 0.1, 0.1], and
d11(t)=0.05 cos(2t), d12(t)=0.07 sin(t), d21(t)=0.06 sin(t),
d22(t) = 0.08 cos(t), τ = 0.08. We also assume that d = 0.2,
and Π = [−0.01, 0.01; 0.01,−0.01], Π0 = [−70, 70; 50,−50].

According to above analysis, we choose ε1 = 0.1, ε2 = 0.6,
ε3 = 1.8, λ1 = 20, λ2 = 18, λ11 = 1.5, λ21 = 1.5, β1 = 8,
β2 = 3 and µ = 1.5. There exists λ0 = 0.01, q = 2, such that
λ̄1 = 16.99, λ̄2 = 21.01. Further, there exists λ̂1 = 5.097 ∈
(0, 16.99) and λ̂2 = 21.031 ∈ (21.01,∞), such that 2 = q >

eλ̂1τ = 1.5034. It’s not difficult to verify that (48) holds with
those parameters and ς = 0.99, π̄ = π̃ = 0.01. By solving (17),
(54)–(57), one can obtain that

P11 = [0.1854, 0; 0, 0.1854],

P12 = [0.2670,−0.0011;−0.0011, 0.2703],

P21 = [0.1943, 0.0446; 0.0446, 0.5675],

P22 = [0.3826, 0.0004; 0.0004, 0.3823],

K1 = [14.0981, 20.9377;−0.0706, 9.7021],

K2 = [8.3710, 9.5497; 1.4964,−9.0793].
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Fig. 1. Switching signal r(t) and the detected r′(t).

Fig. 2. Response curve of w(t) and x(t). (a). Brownian motion w(t);
(b) response curve of x(t) with control input ν ≡ [0, 0]T.

The simulation results are shown in Figs. 1–5. Among them,
Fig. 1 shows the Markovian switching signal which includes
the real switching signal and the detected switching signal with
non-zero detection delay. The detected switching signal also
includes both the case which r′(t) satisfies the conditions of
the Corollary 5.2 and the case which r′(t) doesn’t satisfy the
conditions of the Corollary 5.2. In the later case, the maximum
detection delay is larger than 0.3, then µ2π̄e(λ̂1+λ̂2)×0.3 − π̃ =
57.0534 > λ̂1. Moreover, in order to distinguish the r′(t), we
let value 1.1 and 2.1 to express the mode 1 and mode 2 of r′(t)
which doesn’t satisfy the conditions. Fig. 2(a) shows the curve
of Brownian motion w(t); Fig. 2(b) shows the state trajectories
under control input ν(t) ≡ 0, with initial data x0 = [3,−1.5].
Obviously, system (51) under ν(t) ≡ 0 is unstable, i.e., the
open-loop system is unstable. Figs. 3–5 show the stability of
the closed-loop system, also with initial data x0 = [3,−1.5].
Among them, Fig. 3(a), Fig. 4(a) and Fig. 5(a) show the
stability under the strictly synchronous controller, where the

Fig. 3. Response curve of x(t) with reference input u ≡ [0, 0]T . (a) Strictly
synchronous switching; (b) r’(t) satisfies the conditions of the paper; (c) r’(t)
doesn’t satisfy the conditions of the paper.

Fig. 4. Response curve of x(t) with reference input u ≡ [3, 3]T . (a) Strictly
synchronous switching; (b) r’(t) satisfies the conditions of the paper; (c) r’(t)
doesn’t satisfy the conditions of the paper.

reference input u(t), respectively, equals to [0, 0]T , [3, 3]T

and [3e−0.4t, 5e−0.7t]
T . The so-called strictly synchronous con-

troller means that the controller in (52) relies not on the detected
switching signal r′(t) but on actual r(t). It can be inferred
from them that the system under synchronous switching is
stable. On the other hand, Fig. 3(b), Fig. 4(b) and Fig. 5(b)
show the stability under r′(t) which satisfies the conditions
of Corollary 5.2. Obviously, the asymptotic stability and the
input-to-state stability under r′(t) which satisfies the conditions
can be guaranteed. But compared with Fig. 3(a), Fig. 4(a) and
Fig. 5(a), one can see that the mismatched controller which
caused by the non-zero detection delay has a great influence
on the performance of the system. And moreover, when r′(t)
doesn’t satisfy the conditions of Corollary 5.2, the system is
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Fig. 5. Response curve of x(t) with reference input u = [3e−0.4t,
5e−0.7t]T . (a) Strictly synchronous switching; (b) r’(t) satisfies the conditions
of the paper; (c) r’(t) doesn’t satisfy the conditions of the paper.

unstable, as shown in Fig. 3(c), Fig. 4(c) and Fig. 5(c), which
corresponds to Fig. 3(b), Fig. 4(b) and Fig. 5(b), respectively.
In addition, from Fig. 3(a) and Fig. 3(b), we can see that the
closed-loop system (53) is asymptotically stable, which is in
accordance with the assertion that an ISS system is necessarily
asymptotically stable. In Fig. 4(a) and Fig. 4(b), due to the
effect of reference input u, the state x(t) will not converge to
zero. But, it still remains bounded. In Fig. 5(a) and Fig. 5(b),
since |u(t)| → 0 as t → ∞, system (53) is asymptotically
stable, which is also in accordance with [44, Remark 3.1].

VI. CONCLUSION

We have examined the stability of a class of hybrid stochas-
tic retarded systems under asynchronous switching, where
the detection delay is modeled as a Markovian process. The
Razumikhin-type conditions are extended to the interval of
asynchronous switching before the matched controller is ap-
plied, which allows the Lyapunov functionals to increase during
the running time of subsystems. Motivated by asynchronous
deterministic switched systems, i.e., the stability of closed-loop
systems can be guaranteed by a sufficient large average-dwell
time, by considering the properties of Markov process, the
conditions of the existence of the admissible asynchronous con-
troller for global asymptotic stability and input-to-state stability
are derived. It is shown that the stability of the closed-loop
systems can be guaranteed by a sufficient small mode transition
rate. The main results have also been applied to a class of hybrid
stochastic delay systems, and a numerical example has been
provided to demonstrate the effectiveness.

This study ignores the error of the detector (or, false alarms),
which makes the analysis more difficult. The asynchronous
stability problems with both detection delay and the false
alarms, robust stabilization of general nonlinear systems under
asynchronous switching, etc., are our ongoing tasks.

APPENDIX A

Let V (x(t), r̄(t)) = xT (t)P (r̄(t))x(t), where P (r̄(t)) =
PT (r̄(t)) > 0. For any i, j ∈ S , there exist β1 > 0 and β2 > 0
such that Pii < β1I and Pij < β2I , where I is an identity
matrix with an appropriate dimension. Since Pij = PT

ij > 0,
there exists a low-triangular matrix Lij such that Pij = LijLT

ij .
From [47], HFE + ET FT HT ≤ εHHT +ε−1ET E, ∀ε > 0,
when FFT ≤ I . Then, for any time-interval [t̄2l−1, t̄2l), if there
exists λ2 > 0, λ21 > 0,

LV (x(t), y1(t), i, j)

≤ xT (t)
[
AT

i Pij + PijAi + CT
i PijCi + 2PijBiKj

+π0
jiPii − π0

jiPij

]
x(t)

+ 2xT (t)PijBiu(t) + 2xT (t)Pijfi (t, y1(t))

+ 2xT (t)CT
i Pijgi (t, y1(t)) + gT

i (t, y1(t)) Pijgi (t, y1(t))

≤ xT (t)
[
AT

i Pij + PijAi + (1 + ε3)C
T
i PijCi + 2PijBiKj

+π0
jiPii−π0

jiPij +ε1PijBiB
T
i Pij +ε2PijPij

]
x(t)

+ ε−1
1 uT (t)u(t)

+
[
ε−1
2 ∥U1i∥2 +

(
1 + ε−1

3

)
β2∥U2i∥2

]
yT
1 (t)y1(t)

≤ λ2x
T (t)Pijx(t) + λ21y

T
1 (t)Pijy1(t) + ε−1

1 |u(t)|2

for any εi > 0, i = 1, 2, 3, 4. Similarly, when t ∈ [t̄2l, t̄2l+1), if
there also exists λ1 > 0, λ11 > 0, such that

LV (x(t), y1(t), y2(t), i, i)

≤ xT (t)
[
AT

i Pii + PiiAi + (1 + ε3)C
T
i PiiCi

+ 2PiiBiKi + πiiPii−πiiβ2I + ε1PiiBiB
T
i Pii

+ε2PiiPii] x(t) + ε−1
1 uT (t)u(t)

+
[
ε−1
2 ∥U1i∥2 +

(
1 + ε−1

3

)
β1∥U2i∥2

]
yT
1 (t)y1(t)

≤ −λ1x
T (t)Piix(t) + λ11y

T
1 (t)Piiy1(t) + ε−1

1 |u(t)|2

Then,

AT
i Pii + PiiAi + (1 + ε3)C

T
i PiiCi + 2PiiBiKi + πiiPii

− πiiβ2I + ε1PiiBiB
T
i Pii + ε2PiiPii + λ1Pii < 0 (58)

AT
i Pij + PijAi + (1 + ε3)C

T
i PijCi + 2PijBiKj + π0

jiPii

− π0
jiPij + ε1PijBiB

T
i Pij + ε2PijPij − λ2Pij < 0 (59)

and

ε−1
2 ∥U1i∥2I +

(
1 + ε−1

3

)
β1∥U2i∥2I − λ11Pii < 0 (60)

ε−1
2 ∥U1i∥2I +

(
1 + ε−1

3

)
β2∥U2i∥2I − λ21Pij < 0 (61)

Using P−1
ii to pre- and post-multiply the left term of (58)

and (60) respectively yields (54) and (55) hold. Similarly, using
P−1

ij to pre- and post-multiply the left term of (59) and (61)
respectively yields (56) and (57) hold.

Thus, when let χ(s) = ε−1
1 s2, and if there exists µ ≥ 1,

q > 1, λ0 > 0, such that (17), (47), (48) and (54)–(57) hold.
Then, according to Schurs complement and Corollary 5.2,
system (53) is 2th moment ISS.
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