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Preface

Markovian jump systems typically consist of a finite number of subsystems and a
jumping law governing the active/deactivate mode switches among these subsys-
tems. The subsystems are usually modeled as differential/difference equations, and
the jumping law is a continuous-time/discrete-time Markov chain. Markovian jump
systems are a powerful modeling tool in many engineering areas. For instance,
abrupt changes are often seen in practical systems, due to the abrupt environmental
disturbances, the component and interconnection failures, the abrupt changes of the
operation point for the nonlinear plant, etc. The system can be modeled as having
different dynamics before and after the abrupt changes, and the changes are usually
memoryless and thus Markovian, hence resulting in a Markovian jump system.
Indeed, Markovian jump systems can often be seen in the study of networked
control systems, circuit and power systems, flight control systems, robotic systems,
and so on, where the stability analysis, tracking, fault-tolerant control, etc., have
been extensively discussed. However, the theoretical development of Markovian
jump systems has its own challenges, mainly due to the exclusive Markovian
jumping law. It is well-known that the whole system can still be unstable even if all
the subsystems are stable, while the whole system can be stable even if all the
subsystems are unstable. Furthermore, the existence of random noises, delays,
nonlinearity, modeling error and disturbance, robust stability, H., control and fil-
tering, adaptive control, practical stability and optimal control, etc. are also
important topics in Markovian jump systems.

This book discusses the stability analysis of different Markovian jump systems
as well as some applications. With multiple stability definitions, we analyze and
design Markovian jump systems in a systematic manner. This book is written
primarily for postgraduate students in control theory and applications, and can also
be useful for the researchers and engineers in this area. In order to use this book, the
reader should have the basic knowledge on linear control theory, matrix analysis,
optimization techniques, probability and stochastic processes.

This book contains seven chapters. A brief description of each chapter goes as
follows. Chapter 1 introduces the related history and background of Markovian
jump systems as well as the necessary definitions and notations. Chapter 2 deals
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vi Preface

with the robust stability and H., control issues for a class of uncertain Markovian
jump systems with delays. Chapter 3 investigates various stochastic stability criteria
for nonlinear Markovian jump systems with asynchronous switching and extended
asynchronous switching. Chapter 4 discusses a robust adaptive control scheme for a
class of nonlinear uncertain Markovian jump systems with nonlinear
state-dependent uncertainty. Chapter 5 studies the practical stability in probability,
practical stability in the pth mean, and the practical controllability for stochastic
nonlinear Markovian jump systems. Chapter 6 considers the Markovian jump
system model for networked control systems. Chapter 7 discusses two applications
based on the Markov jump theory, i.e., the fault-tolerant control for wheeled mobile
manipulators and the jump linear quadratic regulator problem.
We hope the reader will find this book useful.

Hefei, China Yu Kang
May 2017
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R,
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Chapter 1
Introduction to Markovian Jump Systems

This chapter first introduces the basic concepts of MJSs, and then some research
topics including the robust stochastic stability, the imprecise jumping parameters, the
nonlinear Markovian jump systems, the practical stability, etc. Notations, necessary
definitions and useful lemmas are also given.

1.1 Background

With the fast development and wide applications of the information technology, a
large number of man-made systems are emerging in various areas including commu-
nications, aeronautics, integrated manufactures, transport management, etc. These
systems are featured by the distinct state driven by the discrete events, and are
essentially complex due to the nonlinear, stochastic and emergent behaviours. This
thus means that the theories of conventional Continuous Variable Dynamic Systems
(CVDS) are not directly applicable, and the theories of Discrete Event Dynamic
Systems (DEDS) developed in 1980’s become the effective methodology for such
complex systems. Furthermore, with the emergence of various complex systems due
to the developments of the large-scale parallel computers, global communications
and high accuracy manufactures, etc., the two aforementioned types of systems inter-
act with each other and further form the so-called Hybrid Dynamic Systems (HDSs).
This new type of systems now become key to the modern information technology
and one of the pioneer science and technology that combines the systems theory,
control theory and operation research.

Mathematically, HDSs refer to those dynamic systems whose state space consists
of both the Euclidean space and the bounded set of the discrete events. In such
systems, the evolution of the systems states is driven by both the continuous time and
the discrete event. Markovian jump systems are one important class of HDSs, where
the discrete events are governed by a Markov process. Various successful applications

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2018 1
Y. Kang et al., Stability Analysis of Markovian Jump Systems,
DOI 10.1007/978-981-10-3860-0_1
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2 1 Introduction to Markovian Jump Systems

of MJSs can be seen in modern communication technology, fault tolerance control,
etc., and the related theoretical challenges have attracted interests over the last several
decades.

Since introduced by Krasovskii Lidskii in 1961, the research on MJSs has attracted
much attention from almost all aspects of the control community. Stability has always
been an important focus in MJSs [12, 27, 84]. For example, Mariton obtained the
sufficient conditions for the mean-square stability and stability in probability of MJSs
using the Lyapunov method, and then the sufficient and necessary conditions using
Kronecker product [67-69]; Feng et.al. proved the equivalence between the second
order moments of MJSs which is sufficient for the stability in probability [36]; Other
works on the stability of MJSs can be seen in, e.g., [1, 11, 18, 20, 26, 32, 35, 36,
49, 50, 75, 81]. Based on those studies, other properties like controllability [49, 50,
88], observability [24, 25, 49, 50, 92], optimal control [22, 23, 33, 37, 39, 49, 50],
and so on, have also been studied. Since 1990s the theoretical foundations for linear
MJSs in continuous time have been constructed. Ongoing are more general forms of
MIJSs like MJSs in discrete time [20, 23, 36, 88], nonlinear MJSs [85, 96, 100-102],
and so forth.

Since a large number of practical systems can be modelled as MIJSs, the study
of MJSs then has both theoretical as well as practical importance. We also notice
that significant improvements on the theory of MJSs are still needed. This book will
cover a wide range of topics related to MJSs, e.g., the robustness and the practical
stability of MJSs, its applications in mobile robots and networked control systems,
etc. These discussions should be of interest to the reader in this field.

1.1.1 Robust Stochastic Stability

Research on this area has been reported extensively, see, e.g., [9-11, 13-16, 19, 22].
To name a few, Boukas and Liu proposed a guaranteed cost robust control strategy for
uncertain discrete time MJSs in [14], Chen and Benjelloun et al. provided solutions
for uncertain MJSs with and without delays, respectively in [13, 22], and output
feedback based strategies can be found in [16]. However those works are restrained to
know bounded norms for the unknown parts [10], or some other forms of restrictions
are enforced, and works are less seen for more general cases with unknown norm
bound.

Lasalle stability principle is often the foundational basis of the parameter estima-
tion based design of the adaptive control strategy for general non-jump systems, and
therefore the key problem in dealing with jump systems is also the construction of the
corresponding Lasalle stability principle. This has been the central of the research
in the last several decades. For example, in 1990 Ji and Chizeck in [50] and Mariton
in [70] discussed the asymptotic stability of linear jump systems

x(t) = A(r@)x(@) + Br@)u@).
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1.1 Background 3
In 1996 Shaikhet included delay in the discussion, that is,
dx(t) = A (r(®))x(t)dt + Ax(r(t))x(t — v)dt + o (x(t), r(t))d B(¢).

Mao proposed such stability conditions for more general nonlinear and delayed
jump systems in [64, 66]. In all these works, the objective is to make the system state
approach to zero (in probability or in mean-square).

Mao [65] and Deng [30] have set up the Lasalle stabilility principle for general
nonlinear stochastic systems by different means,

dx(t) = f(x(),t)dt + g(x(t),t)dB(1).

In 1996 Basak proposed the local asymptotic stability concept for semi-linear
jump systems [7]

dx(t) = A(r®)x(@)dt + o (x(t), r())dB(t),
and then Mao extended this to nonlinear systems
dx(t) = f(x(@), r@)dt +o(x(t), rt))dB(1).

All these works lay the foundation of the further progress on the theory of jump
systems.

1.1.2 Imprecise Jumping Parameters

The main theoretical foundation for the robust analysis and synthesis of systems with
uncertain parameters in the time domain is the Lyapunov stability theory. In the early
days one main method is to use the Riccati equation, which convents the problem to
the solvability of a Riccati type matrix equation, and then gives the conditions for
robust stability as well as the design method for the robust controller. This method
pre-requires certain parameters to be given, and the selection of the parameters has
a significant effect on the solvability and then the conservativeness. Since 1990s,
linear matrix inequality (LMI) based methods become popular, since many control
problems can be converted to the feasibility of a set of LMISs, or the convex optimiza-
tion problem subject to some LMI-based constraints. This convex constraint means
that a set of controllers can be obtained subject to the predetermined constraints,
which is particularly useful in dealing with multi-target control problems. The LMT
toolbox developed by MATLAB provides us with the powerful computational tool
for LMI based design.

On the other hand, H,, control has been a fast developing field in control theory
since its first introduction by Zames in 1981 [103]. Related works include, e.g., Youla
based parametric, Nevanlinna-Pick theory and model fitting method, the solution to

ybzhao@zjut.edu.cn



4 1 Introduction to Markovian Jump Systems

Riccati equation in the time domain, and so on. Furthermore, the robust control
toolbox in MATLAB makes Hy, control theory a practical solution to engineering
systems [31, 86, 99]. Works on the robust control of linear jump systems based on
H,, theory have also been reported [2, 8, 21, 87, 90, 97].

One important assumption in exiting works is that the mode of the Markov jump
parameter r(¢) is accurately measurable, which, however, is often impossible, due to
the poor quality of the device or external disturbance. Therefore, it becomes more
and more important to design the robust controller in the presence of inaccurate
measurement of Markov jump parameters.

1.1.3 Nonlinear Markovian Jump Systems

Practical systems are essentially nonlinear. The nonlinearity can be intrinsic to the
control system, or due to the practical constraints such as the saturation, or created
by the nonlinear control law like the Bang-bang control. Works have been reported
for nonlinear jump systems in recent years. These works have considered nonlinear
jump systems with uncertain parameters [2, 17, 76], the stability of such systems [3,
4], filter design [94], jump parameter detection and filter design [71], robust control
in the presence of the Lure term [77], and so on.

One common assumption in these existing works is that the the nonlinear terms
are known or upper bounded by a known bound [17, 77], and these bounds are
often needed in the controller design. These assumptions may not be feasible in
practice. For such cases adaptive control may be useful. Works have been done for
the robust adaptive control for deterministic nonlinear jump systems, including the
work proposed by [43, 80].

On the other hand, the global stabilization of nonlinear systems has been a pio-
neering field in control theory. The Lyapunov theory is one of the main basis for such
systems [6, 89]. It is noticed that no universal methodology exists for all nonlinear
systems, but for those with strict feedback form or equivalent nonlinear systems,
backstepping method is probably the most efficient solution [54]. A large volume of
results in recent years have proven the effectiveness of the backstepping method [34,
40-42, 51-53, 78, 79]. Some other works can also be seen in [38] for the inverse
optimization method, and the extensions of the backstepping method in various cases
[5, 28-30, 58-60].

Though effective, no results on the controller design for nonlinear MJSs based on
the backstepping method have been reported to date. It is known that the first step
of the backstepping method is the state transformation, and then the construct of the
Lyapunov function and virtual controller based on the new state. This can be fine for
general continuous nonlinear systems, but the Markov jump parameters make that the
transformed states are dependent on those parameters and are not continuous. This
difficulty proposes great challenges for the controller design and stability analysis
for nonlinear MJSs.

ybzhao@zjut.edu.cn



1.1 Background 5

1.1.4 Practical Stability

One essential problem in studying the mathematical models for various practical
systems is the stability. Lyapunov stability was first proposed in 1892 by Lyapunov
in his PhD thesis. In such a theory the properties of the solutions to a set of n-
dimensional differential equations are converted to the discussion of a scale function
(the so-called Lyapunov function) and its derivatives, successfully constructing the
fundamental framework of general stability theory. This theory and associated tools
have been widely applied to various areas, including both deterministic systems [47,
57, 98] and stochastic ones [44, 62, 63].

Another stability definition is practical stability. From the practical viewpoint, a
system can be thought of as stable if its solution is within certain region around the
equilibrium. This is not mathematically stable but often acceptable in practice. For
example, a rocket may contain trajectories which are unstable in the mathematical
sense but can be practically acceptable. This fact thus derives another stability def-
inition, i.e., the so-called practical stability, which was first introduced by LaSalle
and Lefschetz in 1961 [56], and further improved later on by Lakshmikantham [55],
Martynyuk [72, 73], and so on. The general theory for practical stability is still ongo-
ing. In this book we will discuss the practical stability of MJSs in the probability
sense and the corresponding controllability and optimal control problems.

1.1.5 Networked Control Systems

Networked control systems (NCSs) are control systems that are closed via some
form of communication networks [45]. These communication networks can be either
control-oriented, such as the Control Area Network (CAN), DeviceNet, etc., or non-
control-optimized, like the widely used Internet. Most challenges emerge due to the
introduction of the communication networks to the control systems, since lossless
and real-time data transmission are usually not guaranteed by the communication
network, especially those data networks that are not specifically optimized for the
real-time control purpose [46, 74, 82, 83, 93, 95, 104].

MJSs can play a significant role in the development of NCSs, since NCSs are
essentially composed of two different types of signals, i.e. the controlled plant which
is usually in continuous time, and the computer-based data transmission which is
essentially in discrete time, thus making “hybrid” and “switch” some intrinsic fea-
tures of NCSs. Considerable works have been reported on the MJS modelling and
analysis of NCSs, and more works are still expected for the future development of
NCSs.

ybzhao@zjut.edu.cn



6 1 Introduction to Markovian Jump Systems

1.2 Model Description and Preliminaries

As pointed out earlier, the state space of Hybrid Dynamic Systems consists of both the
Euclidean vector space R” and the set of the discrete events ., and can be categorized
as two types, those in discrete time and in continuous time, respectively. We now
give the basic model for HDSs in continuous time with Markov jump parameters
[70].

Let 7 (r) be a Markov chain in continuous time defined on the complete probability
space (£2, F, {Z%}i>0, P) with its domain being . = {1,2,---, N}. Each r(¢) €
7 is called a “regime” of the system. §2 is the sample space, .% is o-algebra,
{Z:}i>0 is the sub-o-algebra reference set which is continuous from the right on
t, #, C F, CF, (11 <), Fo contains all P-null set, and P is the probability
measure. Then the basic model for a Markovian jump system can be described as
follows,

(1.1)

[)’C(t) = f&x@), u®),r@), 1),
y(t) = h(x(0), r(0), 1),

where x(t) € R", u(t) € R, y(¢) € R? are the Euclidean vector space, representing
the state, input and output, respectively, f(-), h(-) are, respectively, the analytic
mapping of R” x R” x . x R - R" and R” x % x R — R? which satisfy the
general increase and smooth conditions [70], to ensure the unique solution for x (¢;)
and u(¢) under arbitrary regime and initial state.

Let ¢, € R" be the characteristic function of r(z), i.e.,

L o=,
¢fl_ 0’ r(t)#l, l_la29 ° 9N'

Then the functions in the jump system can be described by the following three
expressions,

N
FCr@), FG0. D O
i=1

and ¢, satisfies
d¢; = M'p,dt +dM;, (1.2)

where M; is {.%,}-martingale, IT = [r;;]; je.~ is the state transition matrix of ()
given by

i A+ 0(4), I #J;

Pra+d=jrm=i= {1+7r~A+0(A) i=)

(1.3)

ybzhao@zjut.edu.cn



1.2 Model Description and Preliminaries 7
where

iimoo(A)/A =0, (A > 0),

and
i = —Zﬂij, (mij =0, j #10).
J#
(1.4)

For simplicity hereafter we assume 7y = 0, x (0) = xo, 7 (0) = r are constants. For

matrix F (r(t)), we may simplify F(r(¢)) as F; forr(¢t) =i,ie., F; = Fr)lr@y=i»
when no confusion is caused.

Remark 1.1 Another category of HDSs is the switched systems described by

X(@) = foixan(t, x(0), u@)), x(to) = xo, (1.5)

where x(-) € R” is the system state, u(-) € R™ is the input, o (¢, x) : [y, +00) X
R" — .# (. is the index set which can be infinity) is piecewise constant on (¢, x)
and right continuous on ¢, referred to as the switch law or switch strategy for system
(1.5). The switch time instant is

no=inf{t > n_1: 00t x(0) #0WGi, x(t1)}, k=12,

where ) )
Number of switches in [y, 1)

inf (¢t — t,_1) = limsu
kEO [—)oop t - t()

are the dwell time and switch frequency of o (-, -), respectively. The switch law
o (t, x) can be dependent on the events defined by the time and system state. Further,
the switch law is controlled if o (¢, x) is dependent on u as well [91].

The main difference between the jump system studied in this book and general
swithed systems is that the discrete dynamics in the former is uncontrolled and
independent on the system state, while switch itself can be a way of stabilization for
the latter.

The following definitions and theories are needed.

Definition 1.1 (Infinitesimal operator) The effect of the infinitesimal operator of
(x(2),r(t)), £, on scale function g(x(z), r(z), t), is defined as

ybzhao@zjut.edu.cn



8 1 Introduction to Markovian Jump Systems

Lg(x(1),r(t), 1)
1
= lim = [E{g&x(@).r(0).0) |x( ), r(t) 17 } = g(x(7), r(t7), 17)],

where A =t —1".

Definition 1.2 (Uniform boundness in probablityp) The state x, of a HDS is uni-
formly bounded in probability p with the bound ¢ if the solution of the HDS x; (x()
is such that

P[ sup ||Xz(x0)||23} <1l-p. (1.6)

0<t<oo

Definition 1.3 (Uniform boundness with probablity 1) The state x; of a HDS is
uniformly bounded with probability 1 and the bound is ¢ if the solution of the HDS
X (x0) is such that

lim P [sup||xs(x0)|| > e] =0. (1.7)
— 00

s>t

Definition 1.4 (Stochastic stability) A HDS is stochastically stable if the solution
of the HDS x,(x() is such that

| Elineolr)ar <.

Definition 1.5 (Stability with probability 1) The equilibrium of a HDS is stable with
probability 1 if the solution of the HDS x; (xo) is such that

P[ lim  sup [|x,(xp)|| =0} = 1. (1.8)

\|x0|\—>00§f<oo

Definition 1.6 (Asymptotic stability in mean-square) A HDS is asymptotically sta-
ble in mean-square if the solution of the HDSs x; (x() is such that

lim E {lx(x0)*} = 0.

—>00
Definition 1.7 (Asymptotic stability with probability 1) The equilibrium of a HDS
is asymptotically stable with probability 1 if for any ¢ > 0, there exists § > 0, such

that when || xg || < 8 the solution of the HDS x, (x() satisfies

lim P{sup || x,(xo) [|> &} = 0. (1.9)
t—00 s>t
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Definition 1.8 (Exponential stability in p-thmoment) A HDS is exponentially stable
in p-th moment if there exists « > 0, 8 > 0 such that its solution x,(x() satisfies

E{l1x: (x0) |17} < Bllxol|"e™".

In particular, it is exponentially stable in mean-squareif p = 2.

Consider the following switched stochastic nonlinear retarded systems
dx = f(t, x;,v,0)dt + g(¢, x;, v, 0)dB, (1.10)

where x(¢) € R” is the state vector, v(t) € folo is the control input, B(¢) is the m-
dimensional Brownian motion which is defined on the complete probability space
(2, F {F:}i>1,, P), with £2 being a sample space.

Definition 1.9 [61](stochastic input-to-state  stability, SISS) The system
(1.10) is stochastic input-to-state stability(SISS) if for any given ¢ > 0, there exist a
H Zfunction B(-, -), a  function y (-) such that

Pllx@®)] < B(lxol. 1) + y(lullo))} =1 =&, Vi=0,Yxo e R" (1.11)

where [[u(s) || = inf e p)=o supflu(w, s)| : @ € 2\A}, lulljo,) = sup [luls)].
5s€[0,1)

Definition 1.10 [61](globally asymptotically stability in probability, GASiP) The
equilibrium x = 0 of system (1.10) is globally asymptotically stable in probability
(GASIP) if for any ¢ > 0 there exists £ % function B(, -) such that, with the input
u=20,

P{lx()] < B(xol. t —10)} = 1 —&, Vi =1. (1.12)

Definition 1.11 [48](pth moment, ISS) The system (1.10) is said to be pth (p >
0) moment input-to-state stable if there exist 8 € #.% and y € 2 such that the
solution x(¢) = x(¢; to, xo, ip) satisfies

Elx()]” = B(Elxol”, 1) + v (lulloc), V1 = 0. (1.13)

for any essentially bounded input # € R™ and any initial data xy € R",iy € .&, where
lltlloo = SUPseo,00) Nt (S)]-

Definition 1.12 [105] (input-to-state stable in mean, 1SSiM) The system (1.10) is
input-to-state stable in mean (ISSiM) if there exist § € # % and «, y € J#,, such
that for any u € R™, xy € R", we have

Ela(lx(0)D] = B(Ixol, 1) + v (lullo.n), Y = 0. (1.14)
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10 1 Introduction to Markovian Jump Systems
Theorem 1.1 [70] Consider the following HDS,

X(t) = f(x(0), u@),r), 1),

where for any r(t) € ., f(-) are continuous on t, x(t), and the increase and smooth
conditions are satisfied so that the unique solution exists for any regime and initial
state. Let g(x(t), r(t), t) be a scalar function of x(t), r(t), and t. Then, for r(t) = i,
the infinitesimal generator, £, is

N
Lex(0),i,0) = gr(x(), i, 1) + T (x(), u(t), i, 1)gx (x(0), i, 1) + Zﬂijg(X(t), J, 0,
j=1
(1.15)

where gi(x(t),1,1), gx(x(t),i,t) are the partial derivatives on t and x(t), respectively.

Theorem 1.2 [36] For linear HDSs

(1.16)

xX(t) = A(r()x(@),
x(0) = xo,

the following statements hold,

a. Asymptotic stability in mean-square, expontial stability in mean-square and
stochastic stability are equivalent.

b. Stability almost everywhere can be inferred from asymptotic stability in mean-
square, expontial stability in mean-square or stochastic stability, but not true vice
versa.
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Chapter 2
Robust Stochastic Stability

This chapter investigates the robust output feedback H,, control for a class of uncer-
tain Markovian jump linear systems with mode-dependent time-varying time delays.
With known bounds of the system uncertainties and the control gain variations, we
develop the sufficient conditions to guarantee the robust stochastic stability and the
y-disturbance H, attenuation for the closed-loop system. These conditions can be
solved by LMI Toolbox efficiently. Note here that the control design is based on
the measured Markovian jumping parameter r, that may be inconsistent with the
true jumping parameter 7, due to the measurement noises.

2.1 Introduction

Robust stability for time-delayed Markovian jump systems with uncertainties has
always been a challenging problem and has been widely investigated so far. In this
field Hy design has been one popular tool for uncertain delayed Markovian jump
system due to its capability of dealing with disturbance attenuation [2, 7, 8]. For
example, in [7], the results for the robust stochastic stability and y-suboptimal Hy,
state-feedback controller design were presented. In [2], a sufficient condition for
robust stochastic stability and H..-disturbance attenuation was derived for a class
of uncertain delayed Markovian jump linear systems based on the Lyapunov func-
tional method, where the uncertainties are of the norm-bounded type. In [8] the
delay-dependent H,, control problem was considered by adopting a descriptor model
transformation method and a new bounding inequality.

In most existing works, the jumping parameters are often assumed to be precisely
known. This assumption is usually not true in practice while the system states can
often be observed. Therefore, the Wonham filter can be used to estimate the jumping
parameters using the given system matrices. To address this problem, the adaptive sta-
bilization was studied in [6], where the existence condition and the adaptive certainty
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equivalence feedback control were proposed by the parameter estimation technique
of nonlinear filters. On the other hand, imprecise measurements are often present in
analog systems and quantization error sometimes can not be ignored in digital con-
trol systems, making precise control implementation almost impossible. To make it
worse, the overall systems will have poor stability margins if these robust control
strategies are not properly implemented, which applies to common techniques such
as Hy, [; or u synthesis, etc.

On a parallel line, time delays often exist in practical systems such as mechan-
ical systems, chemical processes, neural networks. Delays can deteriorate the sys-
tem performance or even unstabilize the system. For the stability analysis and con-
troller design of such delayed systems the Lyapunov-Krasovskii functionals (LKFs)
approaches are widely used [14-16]. In order to reduce the conservatism caused
by model transformations and inequalities, many new techniques were proposed for
uncertain time delay systems [11, 12, 22, 23]. In [24], the free-weighting matrix
method was proposed to bound the cross product terms and it can reduce the conser-
vatism greatly.

In this chapter, we consider the problem of robust output-feedback H,, control
for a class of uncertain Markovian jump linear systems with mode-dependent time-
varying delays. We also consider the measurement errors of the jumping parameters,
which are always inevitable due to the detection delays and false alarm of the identi-
fication algorithms [20]. The robust stochastic stability analysis and H, disturbance
attenuation design are given by using the measurement value of the jumping para-
meters directly.

2.2 Uncertain Markovian Jump Linear Systems with Time
Delays

Consider the following uncertain Markovian jump linear stochastic systems with
mode-dependent time-varying delays,

x(t) = [A1(r) + A, (ry, DIx (@) + [A2(re) + An, (rr, )]t — 7, (1))
+[Bi(r) + Ap, (ry, )]u(t) + Ba(r)w(1),

z2(t) = [C(r) + Ac(rs, ]x (1),

x(s) = f(s), ry=r9, s€[-2u, 0],

2.1)

where x(f) € R”, z(t) € R™ u(t) € R™ are the system states, system outputs,
and control inputs, respectively. A;(r;) € R"™*", A(r;) € R™", Bi(r;) € R™™,
By(r;) e RM™2 0 C(r;) € R™*" are known real matrices denoting the nominal
system parameters, and Ay, (1, 1) € RV, Ay, (ry,t) € R™V", Ap (1, t) € RP™,
Ac(rs, t) € R™" are unknown matrices representing the model uncertainties [2, 7,
9]. w(t) € R™ is the exogenous disturbance input which satisfies w(t) € L,[0, 00).
f () € R" is a continuous function denoting the initial states. r; is a continuous-time
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2.2 Uncertain Markovian Jump Linear Systems with Time Delays 17

Markov chain that takes value in finite set . = {1, 2, ..., N} with the transition rate
matrix IT defined in (1.3). 7, () represents the mode-dependent time-varying delay
that satisfies

0<t(®) S, <p<oo, t,()<h, <1, Vres 2.2)

where u,, and h,, are upper bounds of 7, (¢) and 7, (¢), for given r, € . u is the
common upper bounded and can be set as u = ma;{ Wit
1e

The following assumption is necessary to establish the main results.

Assumption 2.1 The uncertain parameters can be written as follows [27]:

AAl(r,, t) = Hi(ry) F(re, t)E1(1y),
Ap, (re, 1) = Hi(r) F(ry, 1) Ex(ry),
Ap, (ri, 1) = H\(r) F(re, 1) E3(ry),
Ac(r, 1) = Ha(ro) F(ry, 1) Eq(ry),

where H(r;) € R""/, Hy(r;) € R™>*" E(r;) € RY>*" Ey(r;) € RV Es(ry) €
R >™ and E4(r;) € R"*" are known real matrices, while F' (r,, t) € R"/*"/ are the
uncertain matrix functions satisfying

Fl(r,t)F(ri,t) < I, Vr, € 7. 2.3)

Remark 2.1 As an extension of the matching condition, the structure of the uncer-
tainties in Assumption 2.1 is widely used in the literature on robust control and
robust filter, see e.g. [1-4, 7-9, 27]. How the uncertain matrix functions F(r,,t)
affect the nominal parameters A (r;), A(r;), B1(r;), C(r;) can be characterized by
H\(r), Hy(r1), E1(rs), Ea(r), E3(r;) and E4(r;)

In practical control systems, the environmental noises, external disturbance and
other modelling uncertainties unavoidably cause detection delays and false alarms
when we identify the activated system mode. Similar to [19, 20], we adopt two
stochastic processes to describe the above phenomena. One process, denoted by r;,
is used to characterize the actual system mode in (2.1), and the other one, denoted
by r/, represents the mode we observed or measured in the practical systems. The
difference between r;, and r{ are mainly caused by two kinds of measurement errors,
i.e. the detection delays and false alarms. The following models are used to describe
these measurement errors.
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18 2 Robust Stochastic Stability

o The probability of jump from i to j conditional on r,, denoted by r/, can be written

as
re =i
. 0 . .
o _ | =1 _ | ;A +0(4), L]
P r[.i,-A_,] rt(r =i _[1+7T3A+O(A),l=j (24)
s €t t]

In fact, r/ can be seen as an exponentially distributed random variable with rate

7/;. The parameters 77/, can be obtained by evaluating observed sample paths, and

7l = _Zn;;, () >0, #1i). (2.5)
J#

e Although r, remains at i, { can still occasionally transmit from i to j. Similarly,
we also use an independent exponential distribution with mean 1/ JTilj to describe
this scenario

(2.6)

ploo =i _[rhAa+od),  i#|

AT s e, 1| T | 1+nlA+oA), i=
where nilj is the false alarm rate, which can also be evaluated from observed sample
paths, and satisfies

Th=— anﬁlf’ () =0,j #i). 2.7
i

For simplicity, we simplify M (r{, r,, t) as M;; (t) whenry = j, r, =i, j,i € &,
and let the initial time 7y = 0, then the initial conditions can be written as x(0) =
Xo, ro and rg. Note that all these initial value are deterministic.

The following dynamic output feedback controllers are to be designed.

[f(t) = A3(r))x(t) + B3(r/)z(1), 2.8)
u(t) = K(r)x(), )

where X(#) € R” is the states of the controllers, and As(r?), Bs3(r?), K (r?) are the
unknown matrices of the controllers with appropriate dimensions to be determined.

Practically, it is impossible to implement the above controllers precisely. So, in
this chapter, the controllers with imprecise implementation are described as

u(t) =1 + ()¢, DK F)x(@), (2.9)
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2.2 Uncertain Markovian Jump Linear Systems with Time Delays 19

where o ()¢ (r;, t) represent the additive errors that affect the controller gains. «(r;)
is a positive constant and ¢ (r;, t) satisfies

T i DG, 1) < I, Vr, €.7.

Remark 2.2 Notice that the designed controllers are dependent on the measured
jumping parameter r/. To reconfigure the controllers, the switching of controller
gains K (r/) is based on r/. However, the evolution of the dynamic systems follows
the actual mode r,, and therefore, the variations of the controller gains depend on r,
and have nothing to do with r{.

Apply the control law (2.8) to system (2.1) and denote £(¢) = [x7 (t), X7 (¢)]7,
we obtain the closed-loop system

E(t) = A1(r?, 1, DE() + Aa(r) IoE(t — T, (1)) + Ba(r)w(1),
2(t) = [C(ry) + Ac(ry, )E (), (2.10)
IoE(s) = f(s), ry=ro, s €[-2pu, O],

o [ Ay + Ax (1) (Bui + Ap, (1) (I + o (1)) KJ} c R2%2
Bs; (Ci + Ac, () Asj ’

ZZi — [A2i +OAA2,-(I)] c Rann’ EZi — |:B2i] c RZnXMz’

Iy = [I O] e R™?" for each rP=j,rn=i, Vi,je.Z.

The objectives of this chapter are as follows:

(i) Robust stabilization: Determine the nominal controller gains K (r/) in (2.9) and
establish sufficient conditions for the system (2.1) such that the overall closed-
loop system (2.10) is robustly exponentially stable in the mean square sense;

(i) Hy control problem: Given a constant scalar y > 0, determine the nominal
control gain K (77) in (2.9) and establish the sufficient conditions such that
the resulting closed-loop system (2.10) is robustly stochastically stable with
disturbance attenuation level y under zero initial condition (x(0) = 0), that is

T
J:El/ |:zT(t)z(z) - ysz(z)w(t)]dt] <0,V w(t) £ 0, w() € £[0,00). (2.11)
0
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20 2 Robust Stochastic Stability

2.3 Robust Control

In this section, we study the exponential mean-square stability of the time-delayed
uncertain Markovian jump linear system (2.10) with w(¢) = 0. The following lemmas
are needed in deriving the stability conditions.

Lemma 2.1 [17] Schur complement: Consider the following matrix of appropriate
dimension

0= |:Q11 Q12:|’ 0y > 0, 2.12)

T
12 Q22

then Q is positive definite if and only if Q11 — Q12 Q;; ol >o.

Lemma 2.2 [25] Given matrices Q = QT, H, E and R = R” > 0 of appropriate
dimensions, then
Q+HFE+E"FTHT <0

for all F satisfying FTF < R, if and only if there exits some p > 0 such that
Q+pHH" + p'ETRE < 0.

Lemma 2.3 [19] The infinitesimal generator £ of random processes can be defined
as follows.
For the following jump systems

)&(t) = f(-x(t)s u(t)’ rtf)’ rtv t)’

suppose that f(-) is continuous for all its variables within their domain of definition,
and satisfies the usual growth and smoothness hypothesis, g(x(t), r/, r;, t) is a scalar
continuous function of t and x(t), Vr{,r, € /. Then, the infinitesimal generator £
of the random process {x(t), r/, r,, t} can be described as follows:

o forr) =r; =1, we have
Lg(x(1),1,i,1)
.1 o o . .
= il—>mo = [E {g(x(t + D) s P, D) x (@) =x,1) =i, 1 =1, t}

—g(x,i,i,1)]
N
=g, i, i, )+ fT 0 u(@), i1, D (11 D) + D mijglx, iy j 1) (2.13)

J=1

N
+ > mhex. j. i 0.

Jj=1
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2.3 Robust Control 21
o forr) = j #r, =1, we have

Lgx(@), j,i, 1)
.1 . .
= ilm0 A [E {g(x(t + D), psTan t + D)x@) =x, 1) = j, 1 =1, t}

_g(-xvj)i’t)]
=g, j,i, )+ [T, u@), j,i, g (x, j, i t) (2.14)
+agg(x,ii, ) —wpg(x, i)

Theorem 2.1 Consider the uncertain delayed Markovian jump linear system with
w(t) = 0. If there exist symmetric positive-definite matrices P;;, Q, Z, positive semi-
definite matrices X j;, real matrices K ;, Y;;, Tj; that are of appropriate dimensions
and positive constants pyji, p2ji, p3ji Such that

Ly PijiBy; + p3i ELE3i 0 PijiH; 0 KjT ]
L, 0 K] 0 ViHy 0
L3 ,03j,'E2TiE3,' 0 0 0 0
. L4 MZBli 0 [LZH],' 0 0
Wii=| Ls —I+ ps;;ELEs; 0 0 0 0 |<0 (215
L6 0 -1+ ,01j,‘06i21 0 0 0
L7 0 0 _p3ji1 0 0
Lg 0 0 0 —pzjl'l 0
_Lg 0 0 0 0 —,Oljil_

Xiji Xaji 1§ Yji
=\ X3;; X3 Tji | >0, Vi,jeZ. (2.16)
vil T, Zz

where
[ Pu+psji L Evit2ji Ef Eqi CTVjituX3 ), ®i3+p3ji Ef Exi wAZ 7]
o 2
IL‘l ViCituXi;; U/""'U/Tf:'@z HX3ji 0
L &L +p3ji ES Ei '“'X%ji Dy3tpsji E3; Eai pAY;
24 _ WZ Ay 0 HZAs; —nZ
LZ - Bl Prji+psji E5 Ei 0 p3ji B Ex  pBLZ |
T 0 K; 0 0
: | -
Ly H Py 0 0 nwH;;Z
Lo 0 HEV;; 0 0
L K; 0 0 0o
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22 2 Robust Stochastic Stability

Xii X Xi Xiji X
= Lji A2ji | _ ) 3 .
Xji= |:X2le_ X3ji:| =X lTji le y iji
X5 X2 Xaji
with
if j=i
N N
Dy AT Prii+Prii A+ X i Puj+ > ) P+ Y+ Y] +(14n) O+ X,
= P2 2
if j#i
AT Piji 4 PyjiA + 7% (P — Py + Y + Y5+ A+ 1w Q + X,
N N
P = Zlnijpzu + Zlniljpzji +/’LX%ii’ if j=i
=175 2
”j')i(PZii = Pji) —i—quji, if A

D13 = PijiAy — Vi + T +uXy;, Pz =—Tj;i — T} — (1 —h)Q + nXsji,

T T
n=n£§{|mi|}, Vii= B3 P2ji, Uji = A3, Pyji,
1

then the systems (2.10) are exponentially stable in the mean-square sense.

Proof Consider the nominal time-delayed jump linear system X without distur-
bance:

E(t) = A 1(r?, r)E() + Aa(r) L& (t — 1., (1)),
Do : 2(t) = [C(r) + Ac(ry, DIE®), (2.17)
LE(s) = f(s), rs=ro, s €2, 0]

where

T 0 _ Ay (ry) Bl(rt)K(r;O) 2nx2n
Al(’f””‘[&(rf)C(rt) A3(r?) ]ER ’

Xz(h) — |:A2(§rt)i| c Rann.

Itis worth pointing out that {(§ (¢), 7, r;), t > 0} isnon-Markovian due to the time
delay 7., (). However, if we define a process {(§,, 7/, r;), t > 0)} that taking values in
%o, where & ={£E@ +1) | 2u <60 <0}, 6 = Ui,jey €[—2u,0] x {i, j}, and
€[—2u, 0] denotes the space of continuous functions on interval [—2u, 0], then
we can show that {(&,r/, r;),t > 0)} is a strong Markov process with state space

6o 127].
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2.3 Robust Control 23
Consider the following LKFs candidate:
V.l r, ) =Vi+ Vot V34V, (2.18)
where
Vi =T PG, r)E@) = x" (@) P, r)x (1) + X7 (1) Pa(rf , r)X (),

V, = / xT(s)0x(s)ds

—Tr (1)

0 t
Vi=1n / / xT(s)Qx(s)dsd6
—p Jt+6

0 t
v4=/ / iT(s)Zx(s)dsdb.
—pn Jt+6

Forbothcasesof r} =r, =iandr/ = j, r, =i, j # i, we obtain their respective
results according to the definition of the infinitesimal generator £ in Lemma 2.3.

Casel.r) =r =i

We can find that

N N
Vi =&"(t) | AT, Py + PuAy + Zﬂi_,‘Pz‘j + Zﬂiljpji £(1)
=1 =1

+ &7 (1) Py Apix (t — 7(1)) + x7 (¢ — 7 (1) A% PE(D),
LV, =TI QLoE (1) — (1 — H(O)x" (t — 1:(1) Qx(t — T (1))
+ jzljl:mj /Iif,(,)XT(S)QX(S)dS
<"1 QL) — (1 — hp)x" (1 — (1) Qx(t — 7;(1))
+im_,~ /t xT(s)Qx(s)ds,
=t

—7;(1)

t

LVy = nue" (1] QL&) —n / x"(s)Qx(s)ds,

1—p

eV, = uET (1] Z16E (1) —/ xT(s)Z%(s)ds
t—un

SuéT(t)IoTZIoé(t)—/ %7 (5)Z%(s)ds.

t—=7; (1)
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24 2 Robust Stochastic Stability

Combining (1.4) and (2.2), we obtain

N 1 N ;
Zﬂu/ AT ($)Qx(s)ds < Y n,-,/ x7(5) Qi (s)ds
j=1 —p

=7 ) J=Lj

= —n,»i/ xT(s)Ox(s)ds < n/ xT(s)Qx(s)ds. (2.19)
I—p t—p

To overcome the conservativeness in selecting the optimal weighting matrices
between the terms in the Newton-Leibniz formula, the following condition is pre-
sented [24]:

2[x" )Y +x" @t —de)T] |:x(t) - / x(s)ds — x(t — d(t))] =0,

—d(t)

where the free weighting matrices Y and T indicate the relationship between the
terms in the above formula, and they can easily be selected by means of linear matrix
inequalities.

The following conditions are also employed to complete the proof.

e OX (0 r)E(r) — / (TOX G rE(ds 20, (220)
=Tppis (t)
2T YL ) + X" — 1, )T (0, 11)] %

[log(z) - / i(s)ds — x(t — 1, (r))] —0, (220
t—1,, (1)

where ¢7(t) = [ET(t) xT(t — 7, (t))], and X (r?, r,) are defined in Theorem 2.1.
We have
N

N
SV, i i t) ET@) | Al P+ PiAvi + D Py + D m)Pii | £()
j=1 j=1
+ ET (1) Py Agix (t — (1)) + xT (1 — 7 (1)) AL, P (1)
+ (A +n)E" OIF QIE@) — (1 — h)x" (t — 1,(1)) Qx (t — (1))

t

+pET (I Z1E@) —/ #T(s)Zx(s)ds

=7 (1)

+2 [T O Y 0f ) + 27 = 7, T )] [ o)
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- / t, ) i(s)ds — x(t — n,(r))] +usT X L)
- / : (I):TU)X(r,”,rt)c(t)ds
=T MEit () — / r ()x%,sm,»x(r,s)ds, (2.22)

where
xT@, ) =" x"(t — @) T ()],

g, D) +MA1,,1 ZIyAy;i <D12+MA1”1 ZlyAy
P oL+ uALI Zhh A ¢>22+A2,1 Z 1Ay

A],,Pu + PllAlll + Z ﬂlelj + Z T Pji + ITYiiIO

o~

Py = +IoY,,TIj + (1 + W)ITQIO + 1 Xiii, (f j=1)
A]ij]l+ A1]z+61],(Pu )+IT IO+IOY};I()T
+(1+w)ITQlo+MX1ﬁ, @ Jj#£D
Biy = PjiAyi — If Yji + 1§ T], + nXas, (2.23)

@y =—Tji —TF — (1 —h)Q + uXsji,

n= grelggs{lnul}.
If E;; <0, I} >0, then for each i € S and any scalar § > 0, we obtain

PV &, i, i, D] < —a1 P EO )+ B V&, i, i 1), Yies B>0, (2.24)

where o) = mg}{kmin(—Eii)}-
1€
Similar to [27], we can verify that

t

Vi iy 1) < hnax (P IED I + Anax (Q) Ix(s) 1 ds

t—1;(t)

0 t 0 t
+ D () / / 1£(5)[2dsdO + homar (2) / / 1(s) |2 dsd6
—u Jt+6 —p Jr+6

< hmax (P IEDI + (e + I)A-max(Q)/ Ix()II*ds
t—p

U«)"max(z)/ ||X(S)||2ds
1=
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26 2 Robust Stochastic Stability
Noticing that in nominal system X:
E(1) = Ak (1) + Ani L& (1 — 1, (1))
and letting a; = max [2||Zm ||2], a3 = max [2||22i ||2}, it yields
IEOI® < a2l EOI + azllx(t — 7, ()]
This, together with (2.24), gives
Ll V(& i, i, )] < (—ar +auB)e’ ED)))
+ 3t hmar (Z) Be / ; lx(s — 7, () [I°ds
+ BeP [(1un + Dhimax (Q) + 02 pthmar (2)] / t Ix(s)]I°ds,
o (2.25)

where oy = max{A,q (Pi;)}.
ie?

Using Dynkin’s formula [18],forany T > 0,8 > O,andeachr =r, =i, i € .7,
it follows that

E{P"V (r, 1l 1, T) |0, 7. 70,0 }

T
= V(0. 78 70.0) + E{/ LLePV (&, 0,1, 5)Ids €. 8. 70,0 }.
0

Since the initial time values x(0) = xo, ro and r{§ are deterministic, &y is also
deterministic. Substituting (2.25) into above gives

E{eﬁTV(ET, rl, e, T)}

T
< V(&, 5, po, 0) + E[(—al +a4ﬂ)/ P |E() | *dt
0
T t
+ B[(wn + DAmar (Q) + @2 pthar (2)] /0 P / lx(s) |2 dsdt
t—p

T t
+ a3 (2)B / o / ||x(s—ny(s)>||2dsdr}. (2.26)
0 t—p
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27
Let @ =t — 7;(¢). The following inequalities
dt; (t
tn = 250 g o,
A 2.27)
dt < deo,
—h,

yields

T t
/ eﬁ’/ lx(s)||>dsdt
0 t—p

0 T—u T
S/ M€5(5+“)|Ix(s)||2ds+/ ;,Leﬂ(s+")||x(s)||2ds+/ neP ST x(s))17ds
—u 0 r

K

T T
=pu / P x (@) Pdt < / LM E @) |2 dt, (2.28)
—1 -
T t
/ e’ / Ix(s — . (s)) | *dsdt
K
/ pePC T x (s — 7, (s))II°ds + / weP ST x (s — 7. (5))*ds
0

/ peP ST x (s — 7, () *ds

1 r = — _
= M/ P x(t — T, (1) Pdt < M/ P OT01x(9)*d0
—u 1=hi Joou

1 r 1 T
= M/ ﬂ(t+2/4)||x(t)||2dt < M/ eﬂ(r+2ﬂ)”€(t)”2dt. (2.29)
L=hit Joou 1—hi" oo

Substituting (2.28) and (2.29) into (2.26) leads to

E{PTV (Er, 10 1. T))
T
< V(. rg. P0,0)+E{(—0!1 +a4ﬂ)/0 PIEDIPdr + B[(un + 1DAmax (Q)

r 3P hmax (2)B [T
+ 02 thmax (2) |t / PO E @) |Pdr + = eff““”)nsa)uzdz}
—n 1 =21

0 0
< V<so,r3,ro,0)+E[asﬂef‘“ / 1E@)IPdt + B / &) IPde

—u -2

T
+ [—a1 + s + asBePt + agpe?H] / P ||s(z>||2dr},
0

where s = [(147 + Dmax (Q) + @2pthnar ()], and g = a2,
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28 2 Robust Stochastic Stability

Choose 8 > 0 such that

—a; + s + aspet + asfe?Pt < 0.

Then, we have
E{/TV(Er. 10, 1)} <c, (2.30)

wherec = V(6. 1. po, 0) + E [asBe?™ [°, 60 |Pds + asBe™™ [%, 6] ds ).

Hence, the LMIs E;; < 0, I'; > 0 guarantee that the nominal time-delayed jump
linear system X is exponentially stable in mean square, forry =r, =i,Vi € ..

Casell.r) = j,r,=i,and j #1i
Following similar lines as in the proof of Case I, we obtain

Ev(xfﬂ j7 ia t)

<&7(t) [A];; Pji + PjiArji + q% (P — Pi)] £(0)

+ &7 (1) jiAzix(l — ) +x" (- ri(t))ng,-PﬁE(t)

+ (1 +nwg" 1] QLoE(@) — (1 — h)x" (t — 1:(1) Qx(1 — T (1))

+uéT(t)IJZIoé(t)—/ T (s)Z%(s)ds
t—1; (1)

SET(I)EJ@E(Z)—/ X", )i, s)ds, (2.31)
=7 (1)

where

[

B @) + MAI,,IO ZIOAlj: ‘plz + MA1],1()TZIOA21
/i ol +MA211 ZIOAI,, Dy +A2,1 ZhhAy |’

and the LMIs 8;; < 0, I'j; > 0 guarantee that the nominal time-delayed jump linear
system X, is exponentially stable in mean square, for v} = j,r, =i, and j # 1,
Vj,iesS.

Applying the Schur complement, one sees that forany i, j € S, E;; < 0 implies

@1 @2 MAU,
q){; Dy MAzllT <0, (2.32)
MZlpArji wZloAy —pnZ

which is equivalent to the following condition:
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2.3 Robust Control 29

D CiTB;jpzj,' + ,LLX%”- D3 /LA][;Z
,
Pyji B3jCi + uXi,; AL Paji + PyjiAzj + @n puX3; 0
T
ol wX3; ®33 ALz
MZ Ay, 0 MZAy —pnZ
PyjiBy; 0
0 K] T T
+ 0 I[0K; 00]+ o I[B]Pj; 00 uB,Z] <0.(233)
nZ By; 0

By Lemma 2.2, a sufficient condition guaranteeing (2.33) is that there exists a
positive number p;; > 0 such that

Dy C! Bj; Paji + wXi; D13 pAjZ
T
o PjiB3;Ci + nX3; Agijzji + PyjiAz; + P uX3, 0
ji T
(png ,bLX%ii (1533 /,LA%;»Z
WZAy; 0 MZAy —pZ
Pyj; By 0
2 0 T T K!
+p7; o |T[BiPi00uBLZ]+ | "y |1[0Ki00]<0.(234)
nZBy; 0

Replacing pji Prji, pji P2ji, pji Qs pji Z, pji X ji, pji¥ji and pji Tj; with Pyj;, Paji,
0,Z,X;,Y;; and T};, respectively, and applying the Schur complement shows that
(2.34) is equivalent to

Dy Cl'Vii+uXi;, @13 nAlLZ Pi;iBy; 0
ViCi+ X5 Ui + Uji + @n uX3; 0 0 K]
Wji — ¢1T3 /’LX%ii ¢33 /LAzTiZ 0 0 <0
MZAy; 0 MWZAy —pnZ pnZBy 0O
Bl Py 0 0 wBliZ -1 0
0 K; o 0 0 -I
(2.35)

with j,i € .. Hence, the LMIs (2.16) (2.35) guarantee that the nominal time-
delayed jump linear system X, is exponentially stable in mean square for r} =
Jorr=1i, Vjies.

Then, for the uncertain time-delayed jump linear system (2.10) without dis-
turbance, replacing Ay;, Ay, By; and K in (2.35) with Ay; + Hy; Fi (1) Ey;, Ay +
H\F;(t)Es, By + Hy; F;(t)E3; and K; + «;¢; (1) K j, we can obtain that (2.35) for
system (2.10) is equivalent to the following condition:
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B T T
PyjiHy Ej; Ey;
0 0 0
0 EJ; ET
W, + WZH,, F; (1) 0 + 0 F;(®)
0 El EL
0 0 0
B T T
0 E4i E4i
VI Hy; 0 0
0 0 0
+ 0 Fi (1) 0 1 o Fi(1)
0 0 0
o 0 0
0 01" 0 0
0 K] K] 0
0 0 0 T 0
0 0 0 0
_Ol,' 0 0 o;

P;iHy;

< 0.

T

(2.36)

By Lemma?2.2, a sufficient condition guaranteeing (2.36) is that there exist positive
numbers p1j; > 0, p2j; > 0, p3; > 0 such that

Wi + 03

1
+ 0

+ p1ji

[ Py Hy; Py;iHy; El
0 0 0
0 0 o T
uZHy || nzHy Pl o
0 0 El
0 0 0
[0 o 7" ET
VIiHy | | V]Hy 0
0 0 0
0 0 + 02ji 0
0 0 0
o 0 0
ro]ro” 0 0
0 0 KjT KJ.T
0 0 ) 0
ollo]| TPui| o 0
0 0 0 0
o; o O O
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0
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With the Schur complement one can show that (2.15) is equivalent to (2.37) for
allr = j,r, =i, Vj,i € 7. This completes the proof.

Remark 2.3 Tt can be seen that the condition in (2.32) is nonlinear in the design
parameters A3;, B3;, K; and Pj;. In non-delayed systems, these types of nonlinear-
ities have been eliminated by some appropriate change of control variables with the
general form of Pj; as follows [13, 21]:

Piji Pyji

P =
! |:P2Tji P3ji

i|, Vj,ie.”. (2.38)

To deal with the output feedback control problem for time-delay systems, there
are always some parameters coupled with their inverse which is required to be fixed
a priori, see, e.g., [10, 26]. In this chapter, if we partition P;; as (2.38) and use the
linearizing change of variable approach as in [26] for condition (2.32), the design
parameters Yj;, X i jis Y ;1, X i: will occur in the same inequality.

Then, if we were to transfer the control design problem into the framework of
LMI, we have to fix these parameters a priori, which makes the obtaining of the
optimal relationships between the terms in the Newton-Leibniz formula (2.20) and
(2.21) almost impossible.

To obtain an easier design technique, we choose P;; to be diagonal block matrices

o Plji 0 ..
P”_|: 0 szi:|, Vj,ieS.

It is reasonable to choose Lyapunov parameters P j; for plant states x(¢) and P ;
for control systems states X (), respectively. We can obtain the optimal free weighting
matrices by solving the corresponding linear matrix inequalities without the need to
fix any design parameters, leading to less conservative results.

2.4 Robust H,, Disturbance Attenuation

In this section, we consider robust H,, disturbance attenuation for the time-delayed
uncertain jump linear systems (2.10).

Theorem 2.2 The time-delayed uncertain jump linear systems (2.10) is stochas-
tically stable with y-disturbance H., attenuation (2.11), and the output feedback
control law (2.8) is robust if there exist symmetric positive-definite matrices P jj,
Pyji, O, Z, symmetric positive semi-definite matrices in > 0, constants pyj; > 0,
p2ji > 0, p3j; > 0 and appropriately dimensioned matrices K, Y;;, Tj;, Nj; such
that
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[ I, ,U-AlT,i ﬁl/iBli-H)sjiElTiEzi 0 ¢l PyiHy 0 0
L, 0 0 K7 0 0 VIiHy KT
Ly pALZ  pyjiELEy 0 0 0 0 0
L, uBLZ 0 0 0 0 0 0
s —uZ wZBy; 0 0 puZH; O 0
Lo uBLZ —I+ps;iELEy; 0 0 0 0 0 <0, (2.39)
I, 0 0 —I+pijiel 0 0 0 0
Zg 0 0 0 —p4/;1 0 Hzl’ 0
Ly uH'Z 0 0 0 —pyil 0 0
E]o 0 0 0 HZT, 0 7p2j,'1 0
| Zu o 0 0 0 0 0 —pijil |
ro
Xll]z X12]z Xl3jl IAYZ
= X1, Xoji X23 i Tji
T SIS I >0, Vi el (2.40)
{13]1 X23jl X33J’ /[f
T 7T ~NT
inlo T]l N Z
where
-7 ‘I’IH-Pz/,51[51,-4-92/:54[54, CTV/,-HLXHJ, Wistpsi ELEy Wia |
1 ~. ~
I /LX“/,+V C; Ui+ Ul +¥s, ;Lszj‘. MX@/‘.
%3 Wh+p3; ELE); Mxlzj, Watpsi B Bai Was
4 =,T
Is f& nX %3;’,‘ fw{t ‘1’44:1’2’
T — ZAy; 0 Z Ay Z By
e | = _ MZAy HZ A UZ By
T B Pyji+p3i E3 E; 0 03ji E3; Eai 0 ’
Ts 0 K; 0 0
e A
Tho 1 P1ji
Ly 0 HLVji 0 0
- 0 K; 0 0o
-1 =2 =1 =l
Xy Xuji X Xusji
Xi1ji X12ji X13ji 727 i
v X X X 11ji 11;i 12ji 13;i
Xji= 12ji 2211 uBji | = 77 o1 7 _ ,
XL X' x X i X 12ji Xoji Xo3ji
13ji “*23ji < 33ji —1 T T _r —
X 13ji X 13ji X23ji X33Jl
with
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[t j=1)
” AT Pii+Pii A+ Y +Y] + (1+nu)Q+an,,+Zm,Pl,, znuPl,,,
11 = j=1

Gf j#1)

_AlT,-ﬁlji + PjiAn+ Y + YT +1+n0)0 +MX111, +7T;')i(f)1ii — Pyji).

N - N -~ - . . .
> i Paij + Xl Paji + X3y, if j=i
Uy =1 j=1 i=1

| n?j(ﬁ;ii — Pyji) +M)??1ji, if j#i

Vi3 = ﬁljiAzi - /Y\ji + T\T +/"L5(\{2ji7 Yy = 131,'1'321 + NT +MX13],,
‘1/33=—Tj;—fﬁ—(l—h)Q+MX22,“ ‘1’34——N + 1 X231,

Uy = M)?%ji, n= IiTElEgS{PTiil}, Vii= ngpzji, Uji = Angzji,

[ﬁlji ﬁZji 07 ?ji T}z ]z]—,O4j, [Pljl Py O ZY; T Nji],
S

X! ox2 xL o xt. X Xuji X Xusji
l;jl lljl 12/1 13ji oT 3 > )
w2 w3 w2 w2 5% 5% 2 ¥

Xl]sz Xll]l X12ji Xl%ji = o7} X i Xllei X12ji X135
177 ol = Py4ji | —1 —T — T =

Xﬁﬂ X;%Jl Xaji X23J’ X i X 12ji Xoji Xo3ji

Xl3jl Xl3]z X23jl X3311 v 2l 57

X 13 X 13 Xozji X33ji
Proof For the nominal time-delayed jump linear system X; with disturbance:

E(t) = A2, r)E(0) + Aa(r) & (t — 1, (1)) + Ba(r)w(1),
i 2() =[C(r) + Acry, DILE®), (2.41)
IOE(S) - f(S), ry =10, s € [_I’L’ O]a

where

Ez(’”z) = [Bgér,)i| .

Let ET @) =[ET@) xT(t — 1:(t)) wT (¢)]. Take the Lyapunov function candidate
as (2.18), and employ the following conditions

W OX (O, T — / 7 OX (0, r)T (s = 0,
1=, (1)
2" W1y Y@ ) + 2T — 1, )T G2 r) + W (ONGY, 1]

X |:10$(t) —/ X(s)ds —x(t — 7, (t))] =0, (2.42)
t—1,, (1)
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we can then obtain

t
LV (x;, j,it) < {T(t)Ejig“(t) —/ YT(I, )T ix(, s)ds, (2.43)
t—1; (1)
where

lpll‘i‘ﬂAlJ,I ZI()AI], lI/[2+IJ/A1JlITZIOA2l '1/13—{-141][1 ZIQBQ,

—T —~ — -~ — ~
ji=| Wia+ wALI ZI0A i Woy + nALIT ZIoAy Was + nALIT Z1oBy

—T -~ —~ —T . —~ —_ . ~
Ui+ uBLIl ZIoA ;i Wy + nBl 1l Z10Ay a3+ uBl 1] Z1yBy

AP + P”Xm + ITYulo + LY I 4+ A+ il 0l

a +//LX1111+Z7TUPU+Z7T,] Jjis lf.]:l
1= =
AT, P + PiAv + 1T Yl + LYTIT + (1 4+ T Ol
+/LX1111+5]/‘1'(PU le) l.f];'él

W= PiAy —I] Y+ 1] T L4 uX 12,

Uy =—Tj — TT. — (1= h)Q+ uXnji,

W3 = szle + 15 N i T uX i, Yo = _N i Xy Wy = Xy
n= E‘;%if{im,w},—T(r,s) =[E"® x" @ —7@®) W) )]

Using Dynkin’s formula again [18], we obtain
T
E[ / EV(.XS, r;)a Is, S)ds] = E{V(.XT, rtoa Ity T)} - E{V(XO, r87 ro, 0)}
0
Under the zero initial condition (x(0) = 0), we have

E{V(xo, 15,70, 0)} = 0.

Thus, for any w(t) € L,[0 00), one sees that

T
J E{/ [zT(z)zm - yzw%)w(z)+EV(x[,r;’,r,,z)]dz] — E{V(xr, 10,1, T)}
0

T
SE{/ [ZT(t)z(t)— T(t)w(t)+£V(x, Tt t)] } (2.44)
0
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Substituting (2.43) into the above inequality gives
IIclcilyo 0 _
i 00 0 [)Ew

T_
JEE[A PTm( 0  0—yp2

t
_/ YT(I,S)Fti(l,S)dS]dt}.
=7 (1)

By Lemma 2.2 and the Schur complement we obtain (2.40), and

|

q’11+p4leTC CTB31P211+MX1111 lpl3 lf/\14
PZﬂB3/C + MXU;; A3]P2ﬂ + PZJtA3/ + ¥ MXlZ]l /LX%Sji
¥y nXh; V3 V4
11/12 Xlz':/l lI/3T4 lI/44 N VZI
nZAy; 0 HZAy WZBy
BLPj; 0 0 0
i 0 K; 0 0
MAlT,f 13\1/‘:'315 0 ]
0 0 Kj
pALZ 00
uBLZ 0 0 | <0 (245)
—M/Z\ 2811‘ 0
uBLZ -1 0
0 0 0 |

guarantee J < 0 for any w(t) # 0 (and w(t) € L;,[0, 00)), which also guarantee
y-disturbance H, attenuation (2.11) of the closed-loop system X; from w(t) to
z(1).

Then, replacing Ay;, As;, Bi;, C; and K ; in (2.45) with Ay; + Hy; F;(t) Ev;, Ao +
Hy\ Fi(t)Esi, By + Hyi Fi(t)E3;, Ci + Hy Fi(t)Ey; and K; + a;¢; (t) K ; and using
the similar proof of Theorem 2.1, we can easily verify that the control u(¢) =
K (r{)x(t) guarantees y-disturbance H, attenuation (2.11) of the closed-loop sys-
tem (2.10) from w(t) to z(¢), if the coupled linear matrix inequalities (2.39) and
(2.40) are satisfied. This completes the proof.

In the case that the jumping parameter process can be directly and precisely
measured; thatis,r, =r/?, Vt € [0, 00), the closed-loop system (2.10) is specialized
as

E(t) = A\ (ry, DE() + As(r) IoE(t — T, (1)) + Ba(r)w(1),
2(t) = [C(ry) + Ac(ry, DE(D), (2.46)
I()E(S) = f(s)v rs =7Tro, § € [_2“’5 0]5
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where

i = A+ Ax () (B + Ap, (D) (I + i (D) K; c R2%2n
VT By (G A () Az '

KZi = |:A2i +()AA21' (t):| eRann’ E2i — |:li)21 ] ERanmz’ 10: [IO] e Rann

foreach p, =i, Vi € <.
Then by Theorem 2.2, we have the following corollary.

Corollary 2.1 The time-delayed uncertain jump linear systems (2.10) is stochas-
tically stable with y-disturbance Hy, attenuation (2.11), and the output feedback
control law (2.8) is robust if the jumping parameter process can be directly and
precisely measured, and there exist symmetric positive-definite matrices Py;, Py,
0, Z, symmetric positive semi-definite matrices X; > 0, constants p1; > 0, pp; > 0,
p3i > 0 and appropriately dimensioned matrices K;, Y;, T;, N; such that

™ Ly nAl,Z Py Bii+py ELE5; 0 ¢! PiH; 0 0
L, 0 0 K! 0 0 V'Hy KT
Ly pnALZ  pyELEy 0 0 0 0 0
Ly uBLZ 0 0 0 0 0 0
Ls —uZ wZBy; 0 0 wZH,; O 0
L uBLZ —I+pyELEs 0 0 0 0 0 <0 (2.47)
Ly 0 0 —I+piie?l 0 0 0 0
Ly O 0 0 —psil 0 Hy 0
Lo uHLZ 0 0 0 —pxl O 0
Lo © 0 0 HE 0 —pyl 0

LZu o 0 0 0 0 0 —pil

s o o .7
X X Xz 1y
Sl Sl 2130 fg ]
Xy Xooi Xozi T;
Sloi 2220 223 L
Xisi Xy Xaai Ni
Y7, ! NI Z

1

el

>0, VieJ, (2.48)

where

- L [~ W1i+ps EL Evi+pu EL Ey; C,'TVI+M)A(12“ Vi3t EL By Wa
= o7 ~ = P
L, uXi+VIC Ui+U] +¥ nXy Xy
= r B ~ -
L; Ul+ps ELE) wXh, Us+ps ELEy Wy
L = ool = =
Zz %ﬁ 1Xis Z@Z ‘1’44:721
Te — _RZAy; 0 WZ A WZ By ,
I, Bl Pii+ps ELEy 0 p3i EL Ey 0
i 0 K; 0 0
Z8 C,-A 0 0 0
=9 HT Py 0 0 0
Lo li

L 7, 0 HLV; 0 0

1 L 0 K; 0 0o
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-~ o~ = xXlox2 o xoxl.
11 <211 <2120 <7130
X Xi2i X3 wor v ¥

Y3 2 2
v _ T ] | X X X X
Xl - X12i XZZz X23z = ilf iz'l i i s
vyI YT Yy i i 22i 23i
Xisi Xo3i X33 S o w

vi1T v2I ¥T )
X3 Xi3i X3 X3

N
Wy = AL Py + PiAy + Y + Y] + (L+ ) 0 + uX, + Zni/f)]f’
Jj=1
N
Uy = Z”ijpzj"‘ﬂx?m Wia=Pi Ay —Yi+ T, +uX1y, Was = nXa,
j=1
U= PyBy + N/ + pXiy. Ui =T, = T — (1= h)Q + uXai.

Wy = —N/ + 1 Xa3, 77=I,161?§3§{|7Tii|}, Vi = By Py, Ui = AL Py,
lE.

[Pi P QZY, T, N]=py'[Pi Px Q Z Y T; Nil,

%y % Bl Bl %y B Bl
)/{Hz )/{yrl {121‘ ‘)’(\13i — ,04;1 {Hz {yrl {121‘ {13i
)/(\]1%, i(‘lz%l i{?i ¥\23i {]1%, {12%, {3"21' {23i
X13i X13i X23i X33i X13i X13i X23i X33i

2.5 Numerical Simulation

37

Example 2.1 Consider a time-delayed uncertain jump linear system (2.10) in R?
with two regimes r, € . = {1, 2}. For Mode 1, the dynamics of the system are

described by

T T
-9 -2 25 -2 2.5 0.4
An=|:1 —6]’A21:|:2 —16]E“:|:1} ,E21=|:2} ;

T T
1 0.3 1.5 -2 -1
E41=|:02:| ’B11=|:2:|732l:|:2:|7C1:|:11|,H11=|:2:|7

Eyn=—1, Hy=1, uy =01, hy =1, oy =2.

For Mode 2, the dynamics of the system are described by

T T
0 -2 -2 3 -3 —-0.1
A12=[_3 1:|,A22=|:1_5:|,E12=|:1:| ,E22=|: 1 i| ;

T T
—1 —1 —1 0.6 1
E42=|:2} ,B12=|:_1]Bzz=|:1]C2=[_1] ,H12=|:_1]

E32 = 03, H22 = 1, MHor = 0.1, /’l2 = 04, 0y = 3.
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Let the noise attenuation level y = 1.2, and

[7ijlax2 = [

—12 12
18 —18

} , [T = [

-2 2
5 =5

—4 4
6 —6

] , [nilj]2><2 = [ } .

Solving the LMIs in (2.39) and (2.40), we obtain

P
P
P
Py
Ty =
Ty =
Yii =
Y =
Uy =

Ui

0=

Vio =

11 =

|
[

06450230 5 _ [ 0302 —0.010
0.2300.553 |*"'"* 7 | —0.010 0.119 |’
[0.7010.2667] 5 _ [3.5454 1.127
| 0.266 0.808 |* "% 7| 1.127 1.604 |’
251301041 5 [ 1.697 —0.124
| 0.1044.688 |° "2 7 | —0.124 2916 |
[ 1.910 —1.141 B _ | 3291 —2.969
| —1.141 5488 |° "7 | —2.969 12.955 |’
[13.6512.4487 ~  [13.228 1.842
| 2.410 3.080 [* "7 | 1.188 2.868 |
[12.3752.034] & _ [12.829 1.838
| 2.012 2.940 | " T | 1.741 2.872 |
[ —8435 6.694 1 o _ [—13.236 —1.843
| 5939 —9.778 |° " T | —1.168 —2.868 |
[—13.028 —2.3507 < [ —12.808 —1.838
| —3.585 —=3.703 |* " T | —0.044 —2.816 |
~79.698 1.953 | _[~160.118 —5.683
1.959 —78.229 |" 727 | —5.807 —171.548 |
—44.515 —1.019 [ -120.141 —1413
4386 —43.598 |° 72 T | —1.525 —101.532 |
0.0006 0.00027 5 _ [1.1970.1767 | _ [ 1459 !
0.0002 0.0034 |> = ~ [ 0.176 0.276 |* """ T | —2.172 | °
-0.2917" v _ | 0537 ! v [ 3279 !
—1.407 | * T | —1.846 | - 27 -11917]
23231 o _[-3721] 5. _[3367]
1.086 | * T —0.122 ] - 11634 |
2.9227" 4.3847" —5.2037"
) K1= ’ K2= ?
0.099 1.868 0.494
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p111 = 0.234, pi112 = 0.108, p121 = 0.145, p122 = 0.094,
o211 = 0.567, 0212 = 0.185, 021 = 0.259, 0220 = 5.643,
o311 = 0.332, p312 = 0.086, p321 = 0.344, P32 = 0.976,
P411 = 9.452, p412 = 8.758, P41 = 6.488, Pa2r = 4.182,

Therefore, by Theorem 2.2, the corresponding parameters of a suitable robust
output feedback control law (2.8) can be chosen as

Ae [ 31745 1476 7 [-94.725 7757
T 1126 —16.718 |0 P T | —5.994 —59.161 |
Au [ 726736 -27977 [ —46.141 9.496
2T —5.745 —8.525 |0 72 T | 10.683 —10.013 |°
[ —0.601 0.208 —0.091
B = _—0.478:| Bz = [—0.491} B = [—0.318]’
r T T
—0.209 —4.384 5.203
B = _—0.872}’[{1 Z[ 1.868 } K= [0.494} '

Example 2.2 Consider the robust stability of the uncertain system (1) with the fol-
lowing parameters:

(a4 —2.8 1.1 —0.7 0.2
An = aé] —13]’ A12=[0.4 -2 } A21=[ 0 —0.1]

C 01 02 12 0 0 1.1
An=| o2 —0.1] Bu = [ 0 —2.1]’ Bu= [—4.2 0 }

(1.4 0 0 0.1 10
Hu=1007] H”:[—o.s —1.1] E“Z[oo.l]’
10 0.6 0.3 ~0.20
E12=_00.6]’ E21=[0 _1i|, E22=|: 1 O:|’
[0.3 0 —0.1 0 10

Exi=lo201] E32=[ 0 —0.2]’C1=[01]’

01 01 11
C2=|:10] H21=|:10}, sz:[Ol]’

0.104 -10 -3 3
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Table 2.1 The maximum allowed value of time delay ()

h 0 0.2 0.5 1.0

ajp =-2 E.K.Boukas(2002) 0.2453 0.1522 - -
Theorem 3.1 0.6225 0.5795 0.4930 0.3281

ajp =—8 E.K.Boukas(2002) 1.0061 0.9421 0.5834 -
Theorem 3.1 1.2954 1.0594 0.7242 0.3427

To compare with Theorem 9.18 in [5], Theorem 2.1 should be reduced to the
conditions that the jumping parameter process can be directly and precisely measured
and controller can be accurately implemented. Furthermore, we also assume that
hl = h2 = /’l, and

Ap,(re, 1) = H3(r) F(re, ) Ex(ry),

Ac(ri,t) = Ho(r) F(ry, ) E1 (ry).

The corresponding results are similar to Corollary 2.1, and are omitted here. The
maximum allowed value of time delay for different /4 obtained from Theorem 2.1
are shown in Table 2.1. For comparison, The table also lists the results obtained from
Theorem 9.18 in [5]. From the example, we can find that our results show much less
conservatism than those in [5], especially for the increasing of the value of .

2.6 Summary

The problem of robust output feedback H, control for time-delayed uncertain jump
linear systems has been studied. We have presented sufficient conditions on the exis-
tence of output feedback control by the imperfect information r/, which guarantees
not only the robust exponential mean-square stability but also the y-disturbance H,
attenuation for the closed loop system for all admissible parameter uncertainties and
time delays. However, all of these results are established under conditions of the
prior knowledge of the upper bounds of the system uncertainties. A possible direc-
tion for future work is to obtain adaptive H., control laws with less knowledge of
those bounds.
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Chapter 3
System with Imprecise Jumping Parameters

This chapter investigates Markovian jump systems with imprecise jumping para-
meters. Two switching cases are considered. For asynchronous switching, a class of
hybrid stochastic retarded systems with an asynchronous switching controller is stud-
ied, where the controller design relies on the observed jumping parameters that are
however delayed and thus can not be measured in real-time precisely. For this case,
we assume that the delayed time interval, referred to as the “asynchronous switching
interval”, is Markovian. The sufficient conditions under which the system is either
stochastically asymptotic stable or input-to-state stable are obtained by applying
the extended Razumikhin-type theorem to the asynchronous switching interval. For
extended asynchronous switching, a class of switched stochastic nonlinear retarded
systems in the presence of both detection delay and false alarm is studied, which are
described by two independent and exponentially distributed stochastic processes,
and further simplified as Markovian. Also based on the Razumikhin-type theorem
incorporated with the average dwell time approach, the sufficient criteria for global
asymptotic stability in probability and stochastic input-to-state stability are obtained.

3.1 Introduction

For switched systems, mode-dependent controller has received more and more atten-
tion, which is believed to be less conservative. The mode-dependent controller design
for switched systems is often assumed to be strictly synchronized [5, 13, 14, 26, 27,
29, 30], which may not generally hold in reality due to unknown and unpredictable
issues such as time-delay, disturbance, component and interconnection failures, etc.
Specifically, in practical systems, time-delay often appears in switched systems either
in input control or in output measurements, due to the distance between the place
where control signal is generated and the place where control signal is applied to
the plant as well as significant communication distance between the sensor and the
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44 3 System with Imprecise Jumping Parameters

controller. On the other hand, for the mode-dependent controller design, the switch-
ing information is necessary. However, due to the existence of environmental noises,
disturbances, and small modelling uncertainties, considerable time is needed in the
mode detection of the plant.

It thus presents a great challenge at the boundary of switched systems and time
delay systems, and the concept of asynchronous switching is proposed to deal with
this phenomenon. Roughly speaking, the so-called “asynchronous switching” is
caused by the detection delay of switching signal which results in the mismatched
period of designed controller in each subsystem. The subsystems may be unstable
between these mismatched periods. Furthermore, in reality, because of the uncer-
tainties mentioned above, false alarm (or detection error) is inevitable, which fails
existing results for asynchronous switching with only detection delays. So a class of
new asynchronous switching system with simultaneously considering the detection
delays and the false alarms is studied. To distinguish it from the conventional asyn-
chronous switching system, it is named the extended asynchronous switching sys-
tem. Compared to the conventional asynchronous switching, the developed extended
asynchronous switching can better reflect the actual situation in practical switched
system control.

For conventional asynchronous switching, considerable studies have been
reported, for example, state feedback stabilization [19], input-to-state stabilization
[21], and output feedback stabilization [ 12], the use of the average dwell time approach
[9, 17, 18, 24, 25], just to name a few. However, almost all the researches on asyn-
chronous switching systems are for deterministic switched systems while the asyn-
chronous randomly switched systems have received little attention, especially for
nonlinear systems. Two difficulties are introduced in the analysis of the systems sta-
bility because of the switching signal’s stochastic properties. One is that since the
switching signal is a stochastic process, the methods in deterministic switched sys-
tems, e.g., dwell time approach or average dwell time approach, are difficult to be
used directly; The other one is that the detected switching signal is still a stochastic
process. The relationship between the detected switching signal and the origin switch-
ing signal further increases the complexity of the problem. Recently, the asynchro-
nous issues of MJLSs have also been studied [4, 7, 22]. Among them, [22] and [7]
investigated the stability and stabilization problem for a class of discrete-time MJLSs
via time-delayed controller. In [4], by defining two Markov processes, the stability of
the continuous-time MJLSs with detection delays and false alarms in detected switch-
ing signal and discrete-time MJLSs with constant time delays or random communi-
cation delays in mode signal are developed. Surprisingly, the studies on the stability
analysis for asynchronous stochastic nonlinear systems with Markovian switching are
scarce.

For extended asynchronous switching system, it has shown in [3] that the non-zero
detection delay can make a closed-loop system unstable. Therefore, the existence of
false alarm will inevitably further decrease the control performance. Thus, the so-
called extended asynchronous switching justifies its importance. However, the cou-
pled relationship between the true switching signal and the random detection as well
as the the false alarm also increase the complexity and difficulty of stability analysis
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3.1 Introduction 45

for such system. Moreover, to date switched stochastic nonlinear retarded systems
(SSNLRS) under extended asynchronous switching have received little attention. All
those motivate this chapter’s study.

This chapter is organized as follows. In Sect. 3.2, based on a class of stochastic
nonlinear systems, the formulation of asynchronous switching and extended asyn-
chronous switching and some necessary preliminaries are stated. The global asymp-
totic stability and input-to-state stability are then discussed in Sect.3.3.1. Then, the
main results are extended to a class of hybrid stochastic delay systems and the sim-
ulation results are given in Sect. 3.4.1. Similar stability analysis but for the SSNLRS
under extended asynchronous switching is discussed in Sect. 3.3.2, with an example
given in Sect.3.4.2. Section 3.5 concludes the chapter.

3.2 Asynchronous and Extended Asynchronous Switching

Consider the following stochastic nonlinear systems:

v(6) = h(t, x, u(t), (1)), (-

[dx(t) = f(t, x;,v(t), r(2))dt + g(t, x,, v(t), r(t))dB(1),
with the initial state xo = {x(0) : —71 <0 <0} =& € %g,o([—t, 0]; R") and rg =
r(0) = ip, where x, = {x(t +6) : —t <0 <0}isa % ([—r, 0]; R")-valued random
variable. B(t) = (B;(t), B2(t), ..., B, ()" is a m-dimensional Brownian motion
defined on the complete probability space (£2, .%, {Z}i>0, P), with §2 being the
sample space, .# being a o -algebra, {.%#,;};>0 being a filtration and satisfies the usual
conditions and P being a complete probability measure. r(¢) is the true switching
signal and r’'(t) is the detected switching signal which satisfied Assumption3.1.

In addition, in system (3.1), v(t) € .Zéo is the control input, which relies on the
detected switching signal r'(t). £/, denotes the set of all the measurable and locally
essentially bounded input v(t) € R’ on [0, co) with the norm

vl = ch{r}g’fﬂ)zosup{IV(w,S)l fw € 2\d}

V) litg.000 = sup V()]

s€lty,00)

(3.2)

u(t) e .Zoko is the reference input. Moreover, f : R, x €([—7,0]; R") x R x
& - R'and g: Ry x €([—1,0]; R") x R! x .¥ — R™ " are continuous with
respectto t, x(¢), u(t), and satisfy uniformly locally Lipschitz condition with respect
to x(¢), u(t), and forany i € .7, f(¢,0,0,i) =0, g(¢,0,0,i) =0.
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46 3 System with Imprecise Jumping Parameters

Given that the true switching signal is not available for the controller design in
practical, in what follows, we are concerned with the stability analysis of systems
(3.1) under the following state feedback control law,

v=nh(tx,u,r). (3.3)

where ' = r/(¢) is the detected switching signal, u = u(t) € .i”oko is the reference
input, and & : R, x €([—1,0]; R") x R¥ x . — R! is measurable function with
h(t,0,0,i) =0, forany i € ..

For convenience, denote

f_‘(t5~xl’u7r7r/) Zf(t5xl9h(t7xl7u5r/)ﬂr)
g(tsxt9usr7r/) =g(tsxt3h(t7x[7usr/)vr)

For convenience, let f_ij(t, x;, u(t)) and g;; (¢, x;, u(t)) denote f(t, Xe,u(t), i, )
and g(t, x,, u(t), i, j), respectively, for any i, j € .. Specifically, when i = j, the
mode-dependent controller and the system operate synchronously, while when i #
J» they operate asynchronously. Due to v(¢) relies not on r(¢) but on r’(¢), when
r'(t) # r(t), i.e., on the asynchronous time interval, the designed controller is an
mismatched one for the controlled system, which may cause the degradation of
control loop performance and even make it unstable.

In the chapter, it is also assumed that f, g satisfy the local Lipschitz condition
and the linear growth condition , hence for the closed-loop system

dx(t) = f(t, x,, u(t), r(0), r' ©)dt + g(t, x,, u(t), r(t), r'(t))dB(t) (3.4)

there exists an unique solution on t > —r.

Assumption 3.1 ([11]) The values of r(¢) and r'(¢) can be divided into two cases:

the quiescent case r () = r’(¢t) = i and the transient case r(¢t) =i, r'(t) = j, j #i.

In the first case, only the true modes switches and false alarms may occur. The later

case corresponds to the detection delay or to the recovery from a false alarm. The

only possible switch is thus a switch of r/(¢) from j to i, corresponding to the end of
1

the transient, and this switch occurs on the average after - seconds. In mathematic,

Ji
Case 1. When r(¢) has switched from i to j, r'(¢) follows with a delay d that is

an independent exponentially distributed random variable with mean #

This is written as !
P{r'(t 4+ A) = jlr'(s) =i, s € [t*, 1], r(t") = j, r(t*") =i}

_ [ngAJro(A), i#j

1+7lA+0(4), i=j. (3-5)
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3.2 Asynchronous and Extended Asynchronous Switching 47

The entries of the matrix, I7° = [ni(}] vxn € RVXN are evaluated from observed
sample paths, and

mh == al. (= 0.i # j). (3.6)
J#

Case II. When r () remains at i, '(¢) has transitioned from i to j occasionally.
An independent exponential distribution with rate nilj is again assumed

P{r'(t+ A) =jlo'(s) =i,s €[t t])

1A A). i 1

_ Ao i AT (3.7)

l+m;A+o0(A), i=]

with a matrix, I7' = [nilj] nxn € RVXN of false alarm rates, which can also be valued
from observed sample paths, and

mh=— Znilj’ () = 0,0 # ). (3.8)
J#

According to [11], it then follows from Assumption3.1 that:

Property 3.1 According to Assumption3.1, the greater 7'[,-(} is the faster detection
response speed is, and the smaller nib- is the less of the number of false alarms is,

where i, j € .. When rrg. — 00 and rrili = 0, the detection for the actual switching
signal is perfect.

3.2.1 Asynchronous Switching

The systems (3.1) under asynchronous switching are called hybrid stochastic retarded
systems (HSRSs). In asynchronous switching systems, we only consider the detection
delay, and ignore the detection error. According to Property 3.1, in asynchronous
switching systems, /() should be satisfy Case I of Assumption3.1, i.e. nilj = 0and
ng < 0o. Besides, the r(¢) in asynchronous switching systems we consider in this
chapter is Markovian, i.e. r () is aright-continuous Markov process on the probability
space taking values in a finite state space . = {1, 2, ..., N} with generator IT =

{nij}NxN giVCl’l by

. R ﬂ[jA"‘O(A), 175]
P{r(t+A)_]|r(t)_l}_Hl+7tiiA+0(A),i=j (3.9
where A > 0 is a sufficiently small positive number, and lim 4, "(AA) =0.m; >0
is the transition rate from i to j (j #i), and m;; = —Z;V:Lj#i mij. Let =
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max;c.»{|m;;|} and ¥ £ max; je.s{7m;;} and assume the Markov process r(¢) is inde-
pendent of the Brownian motion B(¢).

In the next, we make some definitions for the Markov process r (¢) and the detected
switching signal r/(¢). Firstly, r(¢) is assumed to be a regular Markov process with
standard transition probability matrix. Let the sequence {#;};>0 denote the switching
instants sequence of r(t), and r(#;) = i;, to = 0. When i; = i, t;.1 — ¢; is called the
sojourn-time of Markov process in mode i. As usual, the sojourn-time sequence
{ti+1 — t;}1>0 belongs to an exponential distribution with rate parameter A (i), where
0 < A(i) < oo is the transition rate of r(¢) in mode i. Further, for all i, j € .% and
i #j,E{ti—tlii=i,ii01=j} = ﬁ, where A (i) denotes the reciprocal of the
average sojourn-time of Markov process 7 (¢) in mode i. According to (3.9), we also
have A(i) = —m;;. On the other hand, the detected switching r’'(¢) is considered as
r'(t) = r(t — d(t)), and it is the only switching signal which can be obtained and
used by the controller. Let {#]};>¢ denote the switching instants sequence of r’'(z). As
in [11], the following statements are assumed to describe the characteristic of 7/(z).
When r(¢) jumps from i to j, r/(z) follows r(¢) with a delay and satisfies Case I of
Assumption 3.1.

Clearly, when letting 718 — 00, the detection is instantaneous. It is assumed that
718. is sufficiently large and 0 < d(¢) < d < inf{f;;; — t;}. Further, /(¢) is causal,
meaning that the ordering of the switching instants of r'(¢) is the same as the ordering
of the corresponding switching instants of r(¢). Thus, it follows that 0 =ty = #;, <
h<tj<h<tj<---<ti <t/ <ty <---,wheretj =1 +d() for any [ > 1.
Define a virtual switching signal 7 (¢), from [0, co) to . x &, by 7 (t) = (r(t), r'(t)).
Let {f;};>0 denote the switching instants of 7(z). Then, for any [ > 1, 7y =t = 1,
t_21_1 = t; and ZTZI = tl/'

Remark 3.1 Various algorithms exist for the detection of Markovian switching sig-
nal. In this chapter, we choose the method discussed in [11], referred to as the optimal
minimum probability of error bayesian detector. As in [11], 7/(¢) is assumed to have
the similar characteristics as 7 (¢), and hence, r’(¢) is regarded as a conditional Markov
process.

In Sect.3.3.1, we focus on the stability analysis of system (3.1) under asynchro-
nous switching. In system (3.1), each subsystem is described by a stochastic func-
tional differential equation, and the switching rule between those subsystems is a
continuous-time Markov process. We will consider the asynchronous case with ran-
dom detection delay and model the detected switching signal as a Markov process
conditional on the real Markovian switching signal. The Razumikhin-type sufficient
criteria for globally asymptotically stability in probability (GASiP) [8], o-globally
asymptotically stability in the mean (¢-GASiM) [28], pth moment exponentially sta-
bility [10], stochastic input-to-state stability (SISS) [8], «c-input-to-state stability in
the mean («¢-ISSiM) [28] and pth moment input-to-state stability (pth moment ISS)
[2] are given. It is shown that, the stability of HSRSs under asynchronous switching
can be guaranteed provided that the mode transition rate is sufficiently small, i.e., a
larger instability margin can be compensated for by a smaller transition rate.

To prove these results, the following lemma is required.
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3.2 Asynchronous and Extended Asynchronous Switching 49

Lemma 3.1 ForanygivenV (x(t),t,r(t),r'(t)) € G (R" x R x ¥ x;Ry),
associated with system (3.4), the diffusion operator £V, from € ([—t,0]; R") x
Ry x .7 x % to R, can be described as follows.

CaseI. Whenr'(t) = r(t) =i, then

LV(x:,t,i,10)
= Vi(x(t), t,i,1) + Vo (x(t), £, 0, 0) fii (£, X, 1)

1
+ Etr[g,-f(r, Xpo ) Ve (X(2), 1,0, 1) 81 (¢, X1, 1))

N
+ > TV (x(@0), 1.k, i) (3.10)
k=1

Case II. When r'(t) =i, r(t) = jand j # i, then

LV (x,t, j, i)
= Vi(x(0), 1, j, i) + Ve (x(t), t, j, 1) fji(t, x,, u)

[ -
+ Etr[ng[(ta Xty u)‘/xx(-x(t)v ], l)gji(tv Xts l/l)]
+ GV (). 1, j, ) =7V (x @), 1, j. ). (3.11)

Remark 3.2 Lemma3.1 is from (2) in [2] and Lemma 3 in [4]. When r'(¢) = r(¢)
for all > 0, (3.10) is the same as (2) in [2]. Otherwise, (3.10) and (3.11) are similar
to the ones in Lemma 3 in [4]. Lemma 3 in [4] considers also false alarms of /(). In
asynchronous switching systems, the causality of #/(¢) means IT' = {nilj} Nxn =0
and (3.10) follows.

3.2.2 Extended Asynchronous Switching

The systems (3.1) under extended asynchronous switching are called switched sto-
chastic nonlinear retarded systems (SSNLRS). Note that, for extended asynchronous
switching systems, the 7 (#) considered in system (3.1) is deterministic.

In this scenario, r = r(t) : [tp, 00) — .7 (. is the index set, and may be infinite)
is the switching law and is right hand continuous and piecewise constant on #, r(¢)
discussed in extended asynchronous switching systems is time dependent, and the
corresponding switching instants sequence is {f;};>0. The i;th subsystems will be
activated at time interval [7;, #;11). Specially, when t = 1y (#y is the initial time),
suppose 1y = r(ty) = ip € .. Besides, r/(t) is the the detected switching signal
satisfied Assumption3.1.

From Assumption 3.1, under any time interval [#,,, t,,4+1), Where t,,,, t,,+1 € {t;}1>0,
the number of switches of /() can only be the following two cases: 2k + 1 and
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Fig. 3.1 The re-definition of {tl/ }i=0 on interval [#;, t;1)

2k, where k > 0 is the switch number of r/(t) which caused by false alarm. We
assume r(t,) = i,,. First, r'(¢) will first switch to i,, with responding to transient
case, i.e., detection delay process, and the detection delay doesn’t equal to zero.
After r'(t) = i\, t € (ty, tmy1), if a false alarm occurs, the next switch is that »'(z)
switch to i,, (recovery from the false alarm mode). Thus, before time t,,;, the
total switch number of r'(¢) is 2k 4+ 1. Second, if the detection delay is zero, i.e.,
r'(ty) = r(ty,) = i, then total switch number of '(¢) on [, t,,+1) will be 2k.

Let {r/};>0 denote the switching instants sequence of /(¢), with o = fjand r' (7)) =
r(tp). Forany i € N, U {0}, let N(#;11, t;) denote the number of switches of 7/(¢) on
[%;, t;4+1). Moreover, as shown in Fig.3.1, we subdivide the sequence {#/};>¢ into a
sequence of subsets, i.e., {t/}i=0 = U]}, 12 -+ ting,, )» such that {f, 1,

., ti’N(wJ’)} C [#, ti+1). In the sequel, we assume that (¢, ) = r/(¢; ) and r/(¢) =
r(t) = r(ty) = io,foranyt € (t, t;). Note that, forany i € N, U {0},r(z;7) =7'(¢])
means that the switches between the subsystems of switched system occur in the case
that the controller and the system operate synchronously. The hypothesis is commonly
employed in the context in asynchronous switching systems, in which there always
exists the period that the controller and the system run synchronously [16-18, 24, 25].

For any i € N, if the detection delay is non-zero, then the controller mode
is strictly synchronous with the system on the following time intervals: [z/,, t/,),
(30 1) - - o Wiy i)

We define Ty (ty, t1) = [to, t1), Ts(t;, t;iy1) = Uj=1,3,...,N(zi+1,zi)[ti/j’ ti,(j-&-l))’ and for
simplicity T, (#;, ti+1):Uj=0,2 _____ N(t’,+l_t’,)71[tl./j, tz'/(j+1))’ where tt'/(N(t,+|,t;)+l) = fiy1,
t{o = t;. However, if the detection delay is equal to zero, then the controller mode
is strictly synchronous with the system on the following time intervals: [#;, 1/,),
[t 1), ..., [ti’N(,iHJi), tiv1).Inthiscase, Ty (¢, t; 1) = Uj:Q2 ’’’’ NUHIJ:‘)[I;]’ ti’(Hl)),
and Ta(tia ti+l) = Uj=1,3,...,N(t,v+1,t,v)71[ti/j’ t,‘/(j+1))~ Then, Ts(ti’ ti+1) ﬂ Ta(tia ti+l) =
&, [t tiv1) = T (t;, ;1) U T(ti, ti+1). In the sequel, we let T, (r — s) denote the
length of T,(t, s), for any t > s > ¢.

To simplify the expression, the next definition is needed.

Definition 3.1 [6] For any given constants t* > 0 and N, let N, (¢, s) denote the
switch number of r(¢) in [s, t), for any t > s > f(, and let
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. r—s
S[t*, Nol ={r() = N:(t,5) = No+ - Vs € [10, 1)}

then t* is called the average dwell-time of S[t*, Ny], and 7, ésup sup m
t>tot>s>19

is
called the average dwell-time of r(-).

In Sect.3.3.2, stochastic input-to-state stability for system (3.1) under extended
asynchronous switching will be investigated. The Razumikhin-type stability criteria

based on average dwell time approach are developed for the proposed extended
asynchronous switching system.

3.3 Stability Analysis Under the Two Switchings

3.3.1 Stability Analysis Under Asynchronous Switching

From the definition of ISS, an ISS system is GAS if the input u = 0. Therefore,
the GAS property is useful for ISS. In this section, GAS in probability and in pth
moment are considered.

To begin with, a useful lemma is stated as follows.

Lemma 3.2 Let V(t) = eV (x(t),t,7(t)) = eV (x(t), t,r@), r'(t)) forallt >0
and ) > 0, then

DYE{V(t)} = E{&V (1)}

= AE{V()} + " E{LV (x,,t,r (1), r (1))}, (3.12)

where DT E{V (1)} = lim sup,,_, o+ w.

Proof Firstly, for any ky, k, € .7, it follows

E{V(t+dtx@),r(t) =k, r'(t) = ko, t}
=E{V@)+AV)dtix@),r(t) =k, r' () =k, t}

+ E{eMV,(x(0), t, F@0)dt|x(t), r(t) =k, 7' (1) = ko, t}
+ E{eMV, (x(1), t, f(t))f(t,xt, u, r(t))dt

+ %e“tr[gT(t, X, F(1) Vir (X (0), £, 7 (1))

x g(t, x;, u, F()dt|x (@), r(t) = ki, v’ (t) = ko, t}
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+ E{eMV(x(t),t,r(t +dt), r' (1))
+ MV (x@), t,r@), r'(t +d0)|x (), r(t) = ki,
r'(t) = ky, t} + o(dt), (3.13)

which is in accordance with Lemma3.1. We complete the proof by considering the
following two cases: r(t) = r'(t) =i and r'(t) = i, r(t) = j, respectively, where
i,jeSand j #i.

CaseLr'(t) =r(t) =i.

In this case, only the true mode switches may occur. Using the conclusion in [11],
it follows

E{MV(x@), t,r(t +db), r'(O)|x@), r(t) =r'(t) =i, 1}

eV (x@),t, j, i) — MV (x(t), t,i,i)]dt

e V(x(),t, j,idt,

N
Zn
j=1

N
Zn
j=1
E{V(x(t),t,r @), r'(t +d0)|x @), r(t) =r'(t) =i, 1}
=MV (x(t),t,i,i) — MV (x(t),t,i,i)]dt = 0.

Then,
E{V(t+dt)x(@t),r ) =r@) =i,t}
=E{(V@OIlx@®),r'®) =r) =it}
+ MMV (x (1), 1,0, i)+ MLV (x,, 1,0, D)]dt + o(dr), (3.14)

where £V (x;, t, i, i) is defined in (3.10). Taking the expectation on the both sides of
(3.14),

DYE(MV(x(1),t,i,0)} = E{Ae™V(x(t),1,i,i) + "LV (x;,1,i,i)}.  (3.15)

Casell.r'(t) =i, r(t) = j.

This situation corresponds to the detection delay, and it is assumed that the true
mode 7 (t) doesn’t switch during this short time lapse. The only possible switch is
that r/(¢) switches from i to j, corresponding to the end of the transient, and this
switch occurs on the average after ﬂ% seconds.

1
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Then,
x(0),r(t) = j}
r'(t) =1i,t
=7V (x(t),t, j,i) — eV (x(t),t, j,i)]dt =0,

x(1), r(t) = j}
r'(t) =1i,t

=1 [MV(x(0). 1. j, j) — "V (x(1). 1, j.D)]dt.

E{M"V(x(t),t,r(t +dt), r (1))

E{MV(x(t),t,r(), r'(t +db))|

Thus, similar to (3.14), it holds that

DYE{MV (x(0),t, j, i)}
= EQeV (x(),t, j, i) + " &V (i t, j, )}, (3.16)

where £V (x;, t, j, i) in this case is defined in (3.11).
Combining (3.15) and (3.16), and considering the arbitrary of i, j, it follows
(3.12), for t > 0. Thus we complete the proof.

Using Lemma 3.2, the criteria of GASiP for system (3.4) is obtained.

Theorem 3.1 System (3.4) with u =0 is GASIP if there exist functions o) €
Kooy Ay € C€CH o, constants £ > 1, g > 1, ko, 0 < ¢ < 1, and V(x(t),t,7(t)) €
C>'(R" x Ry x .7 x Z; R,), such that

ar(x@®) < V@), t, 7)) < ax(|x(@)]) (3.17)

and for any | € N, there exists 1 € (0, A) such that

E{LV(p(0), 1,7 (1))}
[anegy om
provided those ¢ € L' (-7, 0]; R") satisfying that
,n,nelgﬂ E{V(p0), 1+ 0,1, )} < qE{V(p(0), 1,7 (1))}, (3.19)
where
M < g (3.20)
and moreover;
E{V(x(4), 1, 7(1)} < pE{V (x (@), 11, 7 (11-1))} (3.21)
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with some Ay € (A2, 00) such that

pletitidg gz < 5 (3.22)
Proof According to (3.12) in Lemma3.2, we have

DYE{V(x(1),t,7(t))} = E{&V (x,, 1, 7(1))}, (3.23)

forany r € [ty ty—1) U [ty—1, ), ] € Ny, with fo = o = 1) = 0.
On the one hand, from (3.17), using Jensen’s inequality, one can obtain

E{V(x(1), 1,00, i0)} = E{V(x(1),1,7(1)} = E{ea(|x()])} < ca(E{[I5]I}),

forany r € [ty — 7, tp].
In the following, we shall prove that

E{V(x(1). 1. ip. i0)} < ca(E{|E[[Pe™1 07, (3.24)

fort € [to, 1) = [, t1).
Suppose (3.24) is not true, i.e., there exists some ¢t € (f, ¢;) such that

E{V(x(0), 1,0, i0)} > aa(E{|§[[))e M. (3.25)

Let t* =inf{t € (to, 1) : E{V(x(2),t, iy, ip)} > az_(E{||§||})e’;\‘("’°)}. Then

t* € (to, ) and E{V (x (t*), t*, io, i0)} = aa (E{||E||})e "~ Further, there exists
a sequence {f,} (f, € (¢*, 1)), for any n € N, ) with lim,,_,  f,, = #*, such that

E{V (@), i), i, io) > aa(EJ|E[|})e 10, (3.26)

From the definition of t*, for any 0 € [—1, 0], it follows

E{V(x(t* +0),t" 40, i, i)}
< e MEV(x(t*), 1%, o, i0)}

< PTE(V(x(t*). 1*, ip. io)},
and further, for 6 € [—t, 0],

min E{V(x(*+0), 17+, j)} < gE(V(x(t"). 1", io. i0)),
i,je.

thus, from (3.18) and (3.23), we obtain
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DYE{V (x(t*), t*, do, i0)} < =M E{V (x(t%), t*, o, i0)}
< —ME{V(x ("), t*, i, i0)}.

Then, for 4 > 0 which is sufficient small, it holds
DYE{V (x(t%), t*, g, io)} < =M E{V (x(t*), t*, iy, i0)},

fort € [t*, t* + h].
Hence,

EQV @@+ h). 1% + hioi0)) < EV (). 1", . o)) ",

which is a contradiction to (3.26). Therefore, (3.24) holds. Combining the continuity
of function V (x (1), t, iy, ip) and (3.21), we have

E{V(x(@), 11, 7))} < pE{V (x(R), 71, 7 (7))} < proa(E{||E[[})e 0=,
(3.27)

Let W(t,r(t)) = e’_“’V(x(t), t,7(t)). In the sequel, we will show that for any
t € [ty-1, tas1),

E{W(t,7(1))} < pE{W (ty_, F(iy_1))}e™1 927, (3.28)

The following three cases are considered: ¢ € [fy_1, Iy),t = by andt € (fy, ty+1)-
First, when t € [fy_1, ), we claim that

E{W (1, (1)} < pE{W (B, F (i) }e® P00 (3.29)
Suppose (3.29) is not true. Then, there exists some ¢ € [fy;_1, fy) such that
E{W (t, (1))} > WE{W (i1, F(By—1)) e 20,
Let

t* =inf{r € [ty—1, ty) : E{W(t,7(tn))} >
WEAW (fyy 1, F(fyy_1)) e 20—y

thus
E{W (", 7(t))} = RE{W (b1, F(By_1)) et T -0,
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Considering the continuity, there exists a list of sequence {7, },en, € (1*, 1) With
lim,_, o , = t* such that

E{W (i (i)} > WE{W (1. F(iy1)) Je P 0n), (3.30)
Define U(t) = e~ ™) E{W (¢, 7(t))}, then
DYU(t) = —dae ™ E{V(x(1), t, 7 (1)} + e ' DTE{(V (x(1), t, F(t))}.
From the definition of ¢*, for any 6 € [—7, 0], it follows
WE{W (b1 7 (D)) e )40 =)

= E{W(t*, F(fy_1))}e™1 47
> E{W(* 46, F(fy_1))},

which means

E{V(x(*+0),t" +0,7(ty_1))}
< E{V(x(t*), 1*, F (1)}’ < E(V(x (™), t*, F(fy_1))}. (3.31)

Hence,

.migﬂ E{(V(x(t*+0),t*+0,i, )} < qE{V(x{"), 1", F(ty_1))}.
i,je

Then,

DU (%) = —hae ™ E{V (x(t*), t*, (i 1))}
+ e R DTE(V (x (1Y), 1, Fu 1))}
< —(ha — A)e 2 E{V (x (1), 1%, F(fa 1))}

Note that either E{V (x(t*), t*, 7 (fy—1))} = 0 or E{V (x(¢*), t*, F(fz;—1))} > O.
In the case E{V (x(t%), t*, 7(t5y_1))} = 0, we have x(¢t*) = 0 a.s. From (3.31) and
(3.17), we have x(t* + 60) = 0 a.s. for any 6 € [—t, 0]. Recalling that A (t*, 0, 0,
}’/(1721,1)) =0, f(t*, 0,0, r(sz[,])) =0 and g(l*, 0,0, F(lefl)) =0, hence f(l*, 0,
0,7(ty_1)) = 0and g(¢*, 0,0, 7 (f;_1)) = 0. Thus, one sees that x(t* + &) = 0 a.s.,
forall h > 0,1i.e., E{W(t* + h, 7(t3—1))} = 0, which is a contradiction of (3.30).

On the other hand, in the case E{V (x(t*), t*, F(fz;_1))} > 0, there exists a positive
number 4 which is sufficient small such that DTU (t) < 0, for all ¢ € [t*, t* + h],
which means

E{W(@* + h, 7 (ty_1))} < eMTPE(W (™, F iy 1))}

ybzhao@zjut.edu.cn



3.3 Stability Analysis Under the Two Switchings 57

and it is a contradiction to (3.30). Therefore (3.29) holds. Further, (3.28) holds on
t € [ty—1, ty).
By considering the continuity of W (¢, 7(fy_1)) at time ¢ = 7y, it follows

E{W (fy, 7 (7))} < WE{W (fay_1, 7 (1)) }e 17797,

Following the similar analysis on interval (zy_1, f2;), one can prove that (3.28)
holds on (fy;, 12;41), and then it holds on [75_1, t2741).
Thus,

E{V(x(@®),t,r))}
< WE(V (x (1), o1, Fi—1) e TR0 x ertid (332
where 1 € [1y_1, 2141).
By considering the continuity of V (x(¢), ¢, 7(t5)), one can see that (3.32) holds
at time fy;, 1, and then,
E{V(x(t41), ti41, 7 (t141)) }
< WPE{V (x(0), 11, F()) Je 11— glhaiald, (3.33)

Foranyt > f; = 1y, iterating (3.32) from/ = 1tol = N, (¢, ;) + 1, one can obtain

E{V(x(r),1,7(1))}

2 -
S W E{V (XN, ¢.0)+1)5 IN, ,00)+1 FAN)+1)) ) X €
— E{MZ(N"(tvtl)+l_Nr(t»tl))e(Nr(tvtl)"’l_Nr(tvtl))(X1+X2)d}

o +/_\2)de*/_\1 E=tNy (p)+1)

7 _}_\ - 1t
X E{V (XN, .0)+1)5 IN () +15 T AN ) +1)) X @ 1=ty @)
< E{HZ(NV(ZJI)“‘]_NV([JI))e(Nr(tatl)+1_Nr(t:tl))<)_\l+)_\2)d}

2 (A4r)d -~ —M (=t
X W elith) E{V(x@n,a.m)s tN, @) TN, a.m))) X e 1=tva)
= B2 02N 1) N, .0) 42Ny (1) G )y

_ Rt
X E{V (XN, (t.1)s IN,(.10)» TN, 1))} X €@ 1=t )
< o

< E{p20N-00)=2) oW =2 Gatiady 2, G-+

T
x E{V(x(t), 1o, F(12))}e M)

_ E{Mz(Nr(tvtl)71)e(Nr(tatl)71)(il+i2)d} x E{V(x(t), tr, ;(tz))}ef?\l(tftz)

< E{MZ(N,(t,tl)—l)e(N,(t,tl)—l)(Xl+X2)d}ﬂ2€(5»1+iz)d

x BV (x(n). 1,7 ()00

= E{u2N 0N mCitindy o EOV(x(ty), 11, F (1)) e 0. (3.34)
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Combining (3.27) with (3.34), we arrive at
E{V(x(0), 1, 7))} < E{u?NOe®tN 00y o o (E{|gIDe ™, (3.35)
foranyt >ty — 7.

According toLemma6in[1],lets = 21In(n) + ()_Ll + iz)d, there exists a positive
number M > 0 such that

e—;xlzE{MzN,(z,O)e(il+X2)N,(z,0)d} < Me—g,il, +e[MZe(MJr;Q)LIﬁ_ﬁ_S_XI]I.
When ¢i; > ple®+4247 — 7 we have
efgiltE{MzN,(z,O)e(XHer)Nr(t,O)d} <M+1 < oo.
Then,
E{V(x@),t,7(t)} < Me "M ay (E{||EN}) 2 BE{IEN}, 1), (3.36)
for any M + 1 §A7I<oo. B
It’s no (_iifﬁculty to verify B(-,-) € % when 0 < ¢ < 1. Then, for any ¢ > 0,

take f = g Obviously, B(-, -) € # 2. Using Chebyshev’s inequality, we have

E(Vx@).t.r) _ .

P{V(x(1),t,7(t)) > B(E D= —=
{(Vx(®), 1,7 (1)) = BE{IIEN}. 1)} FEUEN.D

i.e.

Pllx(®)| < BCE{IIEN} )} = 1 —¢,
where B(r, s) = o] Yo B(r,s) € # 2. Thus, we complete the proof.

Remark 3.3 (i). Assumption (3.18) is widely used in Razumikhin-type stability
criterion and imposes less restrictions on the functions f (t, @), u(t), r(t)) and
g(t,0(®),u(t), 7(t)), as described in [10]. When ¢ € [t5_1, 1), condition (3.18)
corresponds to the asynchronous case and X, may or may not be positive. In what
follows, A, is assumed to positive, and A; and A, denote the minimal stability margin
and maximal instability margin, respectively.

(ii). In Theorem 3.1, condition (3.22) is given to guarantee the stability. Indeed,
for any i € ., there may exist mismatched periods. Those mismatched periods
are usually bounded with d < oo. In this case, a larger mode sojourn-time is more
appropriate. Based on (3.22), for fixed A1, 1 and ¢, a larger instability margin A, or
a larger upper bound on detection delay d can be compensated by a smaller 7. By
considering 7 = max,c.~{|7;;|}, one can obtain a smaller 7 by decreasing |7;;|. Then

1

the sojourn-time of 7 (¢) inmode i, E{t;y; — t;|i; =1, {;4+1 = j} = Eok Furthermore,

one can claim that the average value of the sojourn-time of r (¢) is less than or equal to
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%, and, the smaller 7 is, the larger the sojourn-time is. Thus, the stability of the hybrid
stochastic retarded systems under asynchronous switching can be guaranteed by a
sufficient small detection delay and a sufficient small mode transition rate 7. This
result has a similar spirit as for asynchronous deterministic switched systems based
on average dwell time approach where the closed-loop stability can be guaranteed
by a sufficient large average dwell time.

The following two corollaries can be obtained directly from Theorem 3.1 and its
proof. Their proofs are omitted.

Corollary 3.1 System (3.4) under a strictly synchronous controller v(t) withu = 0
is GASIiP if u < A‘;”, and the conditions (3.17)—(3.21) hold.

Remark 3.4 The similar conclusion can be seen in Corollary 12 in [1], which consid-
ers the GAS a.s. of a class of Markovian switching nonlinear systems. Corollary 3.1
provides a sufficient criterion in stochastic case with retarded delays.

Corollary 3.2 Under the assumptions in Theorem 3.1, system (3.4) with u =0 is
also a\-GASIM. Specially, if oy € V K o, system (3.4) with u = 0 is GASIiM. Fur-
thermore, if o1(s) = c15?, ax(s) = o8P, where ¢\ and c, are positive numbers,
system (3.4) with u = 0 is pth moment exponentially stable.

Based on the conclusions in Theorem 3.1, we will provide the sufficient conditions
of SISS and pth moment ISS for system (3.4).

Theorem 3.2 System (3.4) is SISS, if (3.17), (3.21) and (3.22) hold and there exist
functions o € Koy, Q) € € H o, X € K, scalers > 1, g > 1, A1 >0, Ay, 0 <
¢ <land V(x(t),t,7(t)) € €*'(R" x Ry x . x .¥; R,), such that for any | €
N,

loO) = x(lullo.00) = E{LV (@(0). 1,7 (1))}

- [—ME{V(QD(O), t,rt)}, t e [f:zl—z, 1:21—1)
- )‘-ZE{V((p(O)9 t’ f(t))}a re [t21—17 t2l)

provided those ¢ € L,]ZJ, ([—z, OI; R™) satisfying that (3.19) and (3.20).

Proof Let the time sequences {t;};~; and {#:};>1 denote the time that the trajec-
tory enters and leaves the set B = {¢ € Lf;zt([—r, 0L R™) = O] < x (lllizg.00)) )
respectively. In the following, we will complete the proof by considering the follow-
ing two cases: £ € BC and £ € B \ {0}, respectively.

Casel. £ € BC.

In this case, forany ¢t € [0, ¢,), [x ()| > x (llu|l{0,00)). According to Theorem3.1,
for any ¢’ > 0, there exists a £ . function 8 such that

P{lx()] < BE{IENIL D} = 1 —¢', Vi €0, 1)). (3.37)
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Now consider the interval t € [z}, 00). Define f; = inf{t > tlx@)] =
X (ltll 7,00}, and inf f = oco. Clearly, for any 7 € [z,, 1), we have

P{lx(®)| < x(lulljp.co)} =1=1—¢", Ve’ > 0. (3.38)
Define t, = min{t > 7; : |x(t)| < x(|lull{s.00))}- According to Theorem3.1, we
also have
P{lx()] < Bx(f),t —1)} = 1 —¢', Vt € [f1,1,).

Similarly, for any i > 2, we define

ty=min{t > iy : [x(O] < x(lullg.00)}
fi =inf{r > 1; - |x (O] = x lullfg.00)}-

By repeating the above induction, for any i > 1, whent € [t,, 1;), we can obtain
Pllx(®] < x(lulli.o0)} = 1> 1—¢",
and when 1 € [;, 1,,,),
P{lx()] < BCE{Ix@)|},t =)} = 1 — ¢
From the proof of Theorem 3.1, the .7 % function B(r, s) satisfies
B(r.s) <oy (Me ™ ay(r)),
for some M > 0, where A3 € (0, (1 — g)il). Since ay € J#4, further, we can get
B(r,s) < oy (Mas(r).
Thus, for any i > 1, whent € [z,, 1;),
P{lx(®] < x(lulljy,00)} =1 = 1 —€", (3.39)
and when 1 € [1;, 1, ),

P{lx(0)| < oy "(Maa(E{|x(#)|}))}
> P{lx] < BE{Ix(@)|}, t — 1)} > 1 —¢'. (3.40)

Considering the continuity of x(¢), we have

E{lx@1} < x(lully,o0)s a-s.. (3.41)
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Substituting (3.41) into (3.39) and (3.40), we obtain
P{lx(®)| < y(lullo.co)} = 1 —&", Vt > 1}, (3.42)

where ¢ = max{¢e’, "}, y (s) = max{y (s), afl(gaz(s))}.
It’s easy to verify that y € #". Then, combining (3.37) and (3.42), we have

Pllx@)] < BCEIEN}, ©) + v (lullo.0o)} = 1 — ¢, (3.43)
forany & € BC, t > 0, where ¢ = max{e’, ”'}.
Casell. &£ € B\ {0}.

Inthis case,t; = Oa.s. Whent > 0, wehave P{tr € (t,, 00)} = P{t € (1, 0)} =
1. Following the proof of Case I, the inequality (3.42) still holds.

P{lx(®)| < BCE{IENY. ) + v (lullo,00)} = P{x (@] < y(lulljo,00)} = 1 — ",
(3.44)

for any 7 € (0, 00).
When ¢ = 0, by the definition of the set ‘B and the definition of y, we can obtain

P{lxO)] < BCE{IIEN} 0) + ¥ (lullo.00)} = P{Ix(O)] < x (Nullo.00))} = 1,
which implies, for any ¢; > 0,
P{lx(O) < BCE{IIEN} 0) + ¥ (lullo.00)} = 1 — €1, (3.45)
Combining (3.44) and (3.45), we have
P{lx(®)| < BCELIIEN. 1) + v (lullo.o0)} = 1 =&, (3.46)
forallz > 0,& € B\ {0}, where ¢ = max{e”, }.
Combining the proof of Case I and Case II, for any ¢ > 0, r >0 and & €
%}0([—1, 0]; R™), we have
P{lx(O] < BE{IIEN}. ) + y(lullo.0)} = 1 —&.
By causality we get
Pllx(@)| < BCELIEN. ©) + v (lulon)} = 1 —e.
Thus, we complete the proof.

Remark 3.5 Since the existence of asynchronous period, if x (¢*) € 8 for some t* >
0, we cannot guarantee that [x (£)| < x (|[u|l{0,00)) @.5.,foranyz > ¢*. But, from (3.42),
it will be upper bounded by ||u||{9,o0) in probability.
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Similar to Corollary 3.2, we have the following results.

Corollary 3.3 Under the hypotheses of Theorem 3.2, system (3.4) is also a\-ISSiM.
Specially, if a1(s) = c15?, ax(s) = co8?, where ¢\ and c, are positive numbers,
system (3.4) is pth moment ISS.

3.3.2 Stability Analysis Under Extended Asynchronous
Switching

This section presents the stability criteria for the SSNLRS under extended asynchro-
nous switching controller. By using Razumikhin-type theorem and average dwell
time approach, we give the sufficient conditions for internal stability, i.e., globally
asymptotically stability in probability and pth moment exponentially stability. Using
the internal stability criteria, then the external stability criteria are developed, includ-
ing SISS and pth moment ISS. Before continuing, some necessary lemmas are stated
as follows.

Lemma 3.3 ForanygivenV(x(t),t,7(t), 7' (1)) € €>'(R" x Ry x .7 x .Z; R,),
associated with system (3.4), the diffusion operator £V, from € ([—t, 0]; R") x
Ry x .7 x L to R, can be described as follows.

CaseI. Whenr =r' =i, we have

N
LVt ivi) = Vil tyin i) + Vil i) fis (8%, w) + D b Vx. 1,i, k)
k=1

1
118 0 i Ve (6, 1, D3 (1, %1, 0], (3.47)
CaseIl. Whenr' = j, r =i and j # i, we also have

LV (xi,t, i, j) = Vilx, t, 0, j) + Vilx, t, 0, ) fij(t, x;, 1)
F ANV i) —aG V(X )

[ o
31185 % W Ve (6, 1,4 &g (8 X, )] (3.48)

wherei, j € ..
Proof The proof can be got directly from [10, 11].

Lemma 3.4 []] Let r(t) denote a continuous-time Markov process with transition
rate matrix [7w;jIyxn € RN then

L @k

P{N:(1,0) =k} < e 0
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forany k > 0, where & £ max;c.o{|7;;|}, T £ max; jcs{m;}, and N, (t, 0) denotes
the number of switches of r (t) on the time-interval [0, t].

Lemma 3.5 Foranyi > 0, we have

=
- ) £t
efyr' (tip1—t;) (T (i1 1))
(e a—

kisan 02dd number

k
~ =1
—al(ti—t) (@ (fi+k1 —1i))?
X

P{N(ti+1,1;) =k} <
e

b
3]
kisaneven number

forany k € N, U {0}.

Proof Let Ni(tj+1, t;) denote the numbers of switches from false alarm on time
interval [t;, t;1+1). In the next, we will complete the proof by considering the following
two cases: N (fi+1,t) = 2k + land N (¢;41, t;) = 2k, where k € N U {0}. From the
Assumption3.1, one can obtain N|(f;11, ) = % = k in the first case, while
Ni(tiy1, 1) = % = k in the second case. Then, similar to Lemma 3.4, it follows

2k+1—1
P{N(ti11,1;) =2k + 1} < P{N{(tiy1, 1) = T}
< e_ﬁl(tH»l—t[) (ﬁl(ti-i—l — ti))k
N k! ’

and

2k
P{N(tiz1,t;) =2k} < P{Ni(ti11, t;) = 7}

—1 k
< e_ﬁ](t[Jrl_t[) (7T (tl"rl - tl)) )
- k!

Thus we complete the proof.

Lemma 3.6 For every i >0, the moment generating function E{e*NUi+1:)} of
N(ti1+1, t;) satisfies

E{e-YN(t,H,t,)} <1+ eS)e(eZJﬁ]—ﬁl)(f[H—ti)

foranys > 0.

Proof Based on Lemma3.5, we have

EfeNtmy = 3" e PIN(ti41, 1) = k)

k=1,3,5,...
+ D SPINGL ) =k)
k=0,2,4,...
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(i — 1) T
=y ok -1y T (t,+k1_]'tz))2
2

-1 k

sk —7 (i1 —1;) (7T (tig1 — 1))?

+ 2 ee —
5!

_ k
_ z sQ@k41) 7 (41—t T (ig1 — 1))
= e e —

= k

n Z eZskgfﬁ'(t,-_,_l—ti)(jT (tiv1 — 1))
!
k=0.1.2... k!

=1+ eb‘)e(ezxﬁ]—ﬁl)(ﬁﬂ—ﬁ)'

Thus, we complete the proof.

Remark 3.6 Following the proof of Lemma 3.6, it follows
E{N(tiy1,1)} < (147 5)e™ <,

where ¢ = sup,y, { — -1}

For the sake of simplifying expression, denote 7° £ max;c»{|nl[}, 7° £

maxi,jey{n}}}, ! & maxiexflnll}, 7' 2 maXi,jey{JTilj-}, 70 £ min;e o {|7)]},
x!' £ minie o {|7} ).
Theorem 3.3 Let ¢ = sup,cy {ti — ti-1} < 0o. If there exist functions o) € Ho,
0 €CH syt >1,9> 1,4 >0,% >0,and V(x(t),t,r(t),r' (1)) € €' (R" x
Ry x .7 x . Ry), such that

(i). forallt >ty — t,

ar(|x())) < V@), t,r(0), r' (1) < ax(|x(@0)]). (3.49)
(ii). there exists Ay € (0, Ay) such that

E{LV(p©®),t,r(1),r' (1))}

—ME{V(p0),t,r (), r" @)},
ift € Ty(f, t141), 1 € N U{0}

M E(V(@(0). 1,7(1). (D)), 550
l.ft € Ta(tlstl+l)v le N+
provided those ¢ € LZ?, ([—7, 0]; R") satisfying that
il}lei% E{V(p@),t+0,i, )} < qE{V(p0),1,r (1), r' (1))}, (3.51)
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where

Mt <gq. (3.52)

(iii). for any i, j > 1, the candidate function V (x(¢), t, r(t), r'(t)) satisfies

E{V(x (), 1}y, r (), r' (1)}
< wEV(x (), 1, r @), r' (1))},

E{V(x(t;), t;, r(t;), r' ()} (3.53)
< WEV Q@) iy r(timn) 7 (0G0
(iv). it exists € (A2, 00) such that
hitde =7 <0, (3.54)

foranyi > land j = 1,2, ..., N(tix1, t;), witht), = t;, t(/)N(tl,lg) = 1}, = to, further,
the average dwell time T satisfies T* > % where

-0 —7° s (22— — 2 ) (N=D =27 ¢
M=+ = = + (= - 1l x e htig—x0 ,
( M)[M-I—)»z—lo )»1+)»2—£0) ]
(3.55)
then system (3.4) with u = 0 is GASIP.
Proof According to (3.12) in Lemma3.2, it has
DYE{V(x,t,r, )} = E{&V(x:, t, 1, 1)}, (3.56)

for all t € T (1, ) UT, (1, t11), l e N+.
On the one hand, from (3.49), using Jensen’s inequality,

E{V(x,t, i, i0)} = E{V(x,t,r.r)} < E{aa(IxD} < ca(E{[E]I})

holds for any ¢ € [ty — 7, o]
In the following, we prove that when 7 € [7o, 1),

E{V(x. 1,00, i0)} < aa(E{[|E||})e 1) (3.57)
Suppose (3.57) is not true, i.e., there exists some ¢ € (7, #;) such that
E{V(x(0), 1, i0, i0)} > aa(E{|E|})e 10—,

Let * = inf{r € (to, 11) : E{V(x(1), 1, i0,i0)} > ca(E{[E})e ™ ¢~}. By the
continuity of V(x(¢), t, ip, ip) and x(¢) on [y, t;), then we have t* € [fy, #;) and
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66 3 System with Imprecise Jumping Parameters

E{V(x(t%), t*, io, i0)} = aa(E{[|€[|})e~*@" ) Further, there exists a sequence {7, }
(f, € (t*, 1), for any n € N, ) with lim,,_, o f,, = t*, such that

E{V (), 7). o, io} > aa(E{[I€[})e ), (3.58)
From the definition of *, we have

E(V(x(t* +0).1* + 0.0, i0)} < e " E(V (x(t*). 1%, ip. i0))
< GqE{V(x(17), 1%, do, i0)},

and further,

Tnin, E{V(x(t*+0),1"+0.i, )} < qE{V(x(t7), 1%, io, io)},

i,je

for any 6 € [—7, 0].
Then, based on (3.50) and (3.51), the following equation holds

DY E{V (x(t*), 1", io, i0)} < =M E{V(x(17), 1*, io, ip)}. (3.59)
Without loss of generality, we have

DY E{V(x(t), t*,ig. o)} < —Ai E{V (x(£*). t*, iy, i0)
< =M E{V(x(t"), t*, io, ip)}.

For & > 0 which is sufficient small, when ¢ € [t*, t* + h], it follows
DYE{V(x(1), 1, io,i0)} < =M E{V(x(1), 1, io, i0)},
which means
E{V(x(t* + h), t* + h,ip, ip)} < E{V(x@"), t*, i, io)}e_i‘h,

and it is a contradiction of (3.58), thus (3.57) holds.
Combining the continuity of function V (x(¢), t, iy, ip) and (3.53), we have

E{V(x(t),t1,r(t1), r' (1))} < pnE{V(x(t1), 11, io, ip)}
< o (E{||E || e 1@, (3.60)

On the other hand, let W (¢, 7 (¢)) = W (¢, r(t), r'(t)) :eX"V(x(t), t,r(t), r'(t)).

ybzhao@zjut.edu.cn



3.3 Stability Analysis Under the Two Switchings 67
Then, for any / € N, and 6 € [—7, 0], we have

= = ADE{W(, 7 (1)},

e T, i)

A1+ 2)E{W (1, 7 (1))},
t €T, tiy1)

DT E{W(t,7 (1)} <

whenever (3.51) holds.
For any [sy, s2) C T,(#, t;+1), we claim that when ¢ € [sy, 52),

E{W (1. 7(1)} < e® 20 E{W (sy, 7(s1)} (3.61)
Suppose (3.61) is not true, i.e., there exists some ¢ € [sy, s) such that
E{W(t,7(1)} > eM D E(W 5y, F(s1)}.
Similarly, set
* =inf{r € [s1,5) : E{W(t, 7))} > E{W(s1,7(s1))} x eP1H30=s0y,
Then
E{(W (", 7(1")} = E{W (51, F(s1))}e™ 7=,
Moreover, there is a sequence {7, },en . € (1%, 52) with lim,,_, 1, = t* such that

E{W(,,7(i,)} > E{W(sy, 7 (s1))}e @0
= E{W(*, F(t*))}e1 A0, (3.62)

We further define U (r) = e~ %1+ W (¢, 7(¢)), then
DYE{U(1)} = —hae 2" E{V (x(t), 1, F(t))} + ¢ >'DTE{V (x (1), 1, 7 (1))}
From the definition of t*, for any 6 € [—7, 0], it follows

E(W @, F()e® 2 = E(W (51, Fsp)))et 0070
> E{W(@* +0,7(t" +0)},

which means

E{V(x(t* +0), 1" + 6,7 (" + 0))} < E{V(x(t), *, F (1))}
< E{V(x (@), 1%, (")},
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and further
lr}lgl& E{Vx@*+0),t"+6,i, )} < gE{V(xE"), t*, F(t*)}.
Then, from (3.50) and (3.51), we have
DYE{U (")} < —(h — dp)e ™ EV (x (1), *, F(1))).
Without loss of generality, it follows
DTE{U(")} < 0.
Moreover, there exists a positive number 4 which is sufficient small such that
DYE{U)} <0, t € [t*,t* + h].
It then follows
E{W(* + h, 7(t* + h)} < E{W (", 7 (1*)) )12,
which is a contradiction of (3.62). Thus, (3.61) is true.
Furthermore, when ¢ € [s1, 52) € Ts(#, t7+1), repeating a similar analysis (similar
to the proof of (3.57)), one can obtain
E{W (1, r ()} = E{W(s1, 7 (s1))}. (3.63)

Combining (3.61) and (3.63), if the detection delay is non-zero, it holds

EXW(t,r(1))}
e(L*iZ)(’*”)E{W(t,, Ft))), telt, tl/l)
E_{W_(tl/p f(tzl]))}s re [tl/l’ 11/2)
e EAW (1], F (1))}, t € [t]y,1]3)
E{W (15, 7 (t/,))}, t €[ty 1))
= e()_hl+X2)([_I/(N(’l+1«lz)*l)) (3.64)

! = !
X E{W(t](N(lHl,lz)—l)’ r(tl(N(lHl,lt)—l)))}’

! /
/ re [fz<N<z,+1,z,)—1)’ (N Gr.1))
EXW N,y TN, )b
/
tE NGy, )

and in this case, N (714, #;) is an even number. If the detection delay is equal to zero,
it also has
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E{W (@, r (1))}
[ E{W (1, r (1))}, t el t)
R E(W (4, F (1)), t et 1))
E{W(t[/2v f(tl/z))}v t S [t[/27 t[/3)

MR EQW (1], F(1f3)}, 1 € 15, 17,)

IA

e(j‘l+;‘2)(’7t1/(1v(z,+1<1,)—1>) (3.65)

’ = /
XEXW (v i,yap-1 T v n-n) s

! i
o e - v )
EXW Uy T Uy, s
/
1€ [ty 1)

and in this case, N (#41, #;) is an odd number.
Then, for any ¢ € [1;, t;41), if [tl/N(z,z,)’ tl/(N(l,ll)-H)) € Ty(#, t;4+1), we can obtain

E{W(t,7 (1)} < E{W (t/x ¢y T Wngp))
’ = ’
= E{uW Wy TG n-1))
N(t,t;)—N(t, 1 =
= E{uN "N EIW (T vy 1))
< E{MN(IJI)*N([JI)“’I}E{e(il+X2)(’/N(z,l,)7tl/(N(l,ll)—l))
’ = ’
X W(tv.m-ns TG -1y)}
< E{MN(t,tn—N(z,wz}E{edn+iz><t/N<,,,,)—t/<N(,,r,)_n)}
! - /
X EXW (v iy-1)s T O -2}
< E{’uN(t,tz)*N(t,tz)JrZ}E{e(il+5~2)(’1/Nu.z,F’[(N(r.q)—l))}
’ = /
X EXW(tin.ay-2)0 Tn -2}
< E{MN([J[)_N(L[[)‘HS}E{e(xl+;‘2)(II,N(1JI)_tl/(N(r,t,)—l))}
/ - /
X EAW iy ,0y-2)> TGn i,y -3))))
< E{MN(t,tl)—N(t,tl)+3}E{e(il+5~2)(’z/1v<m,)*’z/w(z.q)—l))

% e()‘]+)‘2)(tl/(N(r.fl)—2)7t1/(N(t,!l)—3))}

7 =4/
X E{W (v -3 T ivap-3))}

IA

< E{uNOD)EeM I E(W (1, (1))

And similarly, on the one hand, if [#]y., ) t/v . e1)) € Talti, 1), italso follows
that
E{W(1,7(1))}

< E{uNCYE{eM I TCTONELW (17, F (1))
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70 3 System with Imprecise Jumping Parameters

Then, without loss of generality, for any ¢ € [#, #;41), it holds

E{W(t,7(1))}
< E{uN OOV E(e R OV E(W @, 7 (1))
< E{pV0er0) EfeG R T0am0) BAW (1, F (1)) (3.66)

On the other hand, for any / > 0, it holds (3.67a) and (3.67b).

E{e(iﬁiz)ﬂ(nﬂ—n)}

(3.67a)
E{eal‘i’iz)(f/] *t/o)e(iﬁ’i’_’)(tﬁ*t[/z) - e(il+5‘2>(tl/N(r,+|.t/)_lI,(N(tHlAtl)—l))}
M. N(ti41,14) is an odd number
- (3.67b)
E{e(xl+5\z)(l/2—l/1)e(5»1+X2)(l[4—t,'3) . e(il+5“2)(’1/N(:H1.rl)*’/(Nu,H,z,)—lJ)}
M, N(ti41,t) is an even number
Since
7 7 ’ ’ o0 3 7 0or
E{e()\l+)\2)(llj_t[j,])} S/ e(M-Hz)l]‘TO e_l dt
0
—70
B Ay — lo’
then, based on Lemma3.6, let s = In i, we have
ETEE
E{e()_t1+)_t2)7-z:(tl+l_ll)}
r ~0 N4 11D +1
-
Bl b
- N (t11, t7) is an odd number
= —0 N(pg1.)
- —=
Bl )
L N (1141, t;) is an even number
[ WK, + Kl)e(Klﬁ]*ﬁl)(lHl*ll)’
N(t11, 1) is an odd number
=< K7 =Yt —11) (3.68)
(1+ /Kl)e 1 1+1 1’
N (141, t;) 1s an even number
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and without loss of generality,

E{e(X1+X2)Ta(f1+1—lz)} < K2e(Kl7'_fl_ﬁl)(ll+l_ll)

WhereK1 Z_—JTU Kz:K]%-\/?[ =max{\/?1+K1,1+\/?1}.

Jitr—x0’
In addition, if we let s = In(w), utilizing the Lemma 3.6 again, we can obtain

E{MN(”*"”)} < (14 M)e(uzﬁlfﬁ')(nﬂftz).
Consequently, for any ¢ € [#;, ; + 1), it has

E{W(t,7(1)} < K3 E{W (1, 7 (1))}
< K30 E(W (1), 7 (1))
< ME{W (1, 7))}, (3.69)

where K3 = (1 + ) Ky, ky = (> + Ka' — 27", ky = [(u* + KD(N — 1) — 2]
al, M = Ksebis.

From (3.53), for any t > ¢, iterating (3.69) from/ = 1to/ = N,(t,t;) + 1, we
can get

E{W(t,7(@))} < ME{W (N, ¢,m)+1, T AN, ¢.)+1))}

< UMPE{W (ty, .00y Py, 0.0))}

< WMPE{W (tn, ()15 TN, (-1}
< o

< p MV COTLEW (1, 7 (1)),
which means for any t > 11,

E(V(x(t), t,r(1), (1))} < N0y 0+ =it
x E{V(x(0), 1, r (1), r' (1)), (3.70)

Combining (3.60) and (3.70), we have

E{V(x(@), 1, r@),r' (1)
< N YN R g (E(E]))

= (UM)N 0 == g (E (|||}

< (uM)MoeHFEEN 0 g (E(1E]1)
2 B(E{IIEN}. t — to), (3.71)

for any t > .
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72 3 System with Imprecise Jumping Parameters

Clearly, E(-, ) € %L if and only if t* > % For any ¢ € (0, 1), take B =

g € X Z. Obviously, (3.71) also holds for ¢ € [fo, t;). Then, using Chebyshev’s
inequality and the above inequality, for all ¢ > 1,

PV (x(0),1,7(1), (1) = BE(IIEI, 1 — 10)}
_ EVGa@, 1 r@), r'(0)}
= <€
BCE{IEN}. 1 — o)

Define B(r, s) = a; ' o B(r, s), then
P{lx(®)] < BCE{l&NI}, t —10)} = 1 — &, Vi > 1o,

where 8(-, ) € X L.
Thus, we complete the proof.

Remark 3.7 In Theorem 3.3, the assumptions (3.49), (3.51), (3.52) and (3.53) are
common conditions in the stability analysis of switched stochastic time-delay systems
[15]. The condition (3.50) is also commonly employed in the asynchronous switched
deterministic systems [24], while (3.54) is set to restrict the conditions that the system
(3.4) needs to be satisfied under the existence of detection delay and false alarm.

Remark 3.8 For the detection of 7 (), consider the following two special cases. First,
if IT° and IT' are set to oo and zero, respectively, there is no detection delay and
no false alarm in the mode detection, the closed-loop system is a synchronous case.
In this case, the conditions (3.50) and (3.54) hold almost surely. Second, if I7'
is set to zero while IT% < oo, the situation corresponds to only a detection delay,
and 7° < oo, 7! = 0. Hypothesis (3.54) restricts the necessary condition that the
closed-loop systems need to be satisfied under this case.

Remark 3.9 According to (3.54), (3.55) and the average dwell time t* in
Theorem 3.3, one can see that the stability of the extended asynchronous switch-
ing systems can be guaranteed by a sufficient small mismatched time interval and a
sufficient large average dwell time. Given that the mismatched time interval in the
developed extended asynchronous switching framework is usually caused by: the
size of detection delay, the frequency of occurrence from false alarms, and the length
of the recovery time from a false mode, it is further explained as follows:

@i). For any fixed A;, u, ¢ and 7', a larger instability margin A, (or A,) will
be compensated by a larger 7° and/or a larger average dwell time 7*. Since 7° =
min; ¢ y{lni(} [}, alarger £° can be obtained by increasing |712| or decreasing 772 The
larger |713 | is the smaller of the detection delay for mode i is. Thus, when nﬁ increases,
if 7° = max; ¢ y{nioj} is non-increase, a lager instability margin can be compensated
by a small detection delay; however if 7° is also increased, a larger average dwell
time 7* will work, and the larger instability margin will be compensated by a smaller
detection delay and a larger average dwell time 7*.
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(ii). When A, i and ¢ are fixed, and we assume 7° and 7° do not change through
a fixed constant 713 @i, j € &), then if the instability margin A, (or )_Lz) increases, M
will also increase. In this case, the larger M can be compensated by a smaller 77! or
a larger average dwell time 7*. Note that, a fixed constant 718. (i, j € .%) means that
the time costs of the detection of true modes and the recovery from a false mode do
not change on the average. Given that 7' = max; jes {7}, 7' can be reduced by
decreasing nilj. Then the number of false alarms will decrease, and consequently, the
mismatched time from false alarms will also decrease, which can well compensate
the impact of larger instability margin.

Using the GASIP criterion in Theorem 3.3, one can further obtain the following
SISS conditions.

Theorem 3.4 Let ¢ = sup,y {t; — -1} < 0. Ifthere exist functions y € A, a; €
Af/f%/oo, o) E(ff%/w, = 1, q > 1, A > 0, A >0, 5\1 € (O,)\l), )_»2 € (Ay, 00),
and V(x(t),t,r(t),r'(t)) € €>'(R" x Ry x .7 x .7; R,), such that hypotheses
(i), (iii), (iv) in Theorem 3.3 hold, and

O] = ¥ (lulling.00) = E{LV (@(O), 1,7 (1), r' (1))}

_)LIE{V((/)(O)’ t7 r(t)a r/(t))}5
t € Ty(t, t141), 1 € Ny U{0}

I E(V (@), 1.r(0). F' (1)), 672
t € Tu(t, t141), 1 € Ny
provided those ¢ € Lpgzr ([—1, 0]; R") satisfying that
lf}flelf}, E{V(p0),t+0,i, )} < qE{V(p(0),1,r (1), r' (1))}, (3.73)
where
M <q. (3.74)

Then, system (3.4) is SISS.
Proof The proof is similar to Theorem 3.2 and is thus omitted.

Remark 3.10 Despite the similarities of Theorems3.2 and 3.4 in this section, the
following essential differences are observed.

(1). Due to the existence of mismatched time interval which caused by detection
delays and false alarms, after the state trajectory enters the set B, there still exists
a chance to leave it. This complicates the system and is different from the normal
asynchronous case in Sect. 3.3.1.

(i1). The system in this section is deterministic switched system while the system
in Sect.3.3.1 is Markovian switching.
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(iii). Section3.3.1 considers only the detection delay while this work consider
both the non-zero detection delay and the false alarm. The inclusion of false alarm
makes the extended asynchronous switching model in Sect.3.3.2 more practical.

Corollary 3.4 Under the assumptions in Theorem 3.3 (Theorem 3.4), if functions o,
oy satisfy a1 (s) = c15?, ax(s) = cas?, where ¢y and c, are positive numbers, then
system (3.4) is pth moment exponentially stable with u = 0 ( pth moment ISS), for
all t* > W)

Al )

3.4 Numerical Simulation

3.4.1 Asynchronous Switching

Hybrid stochastic delay system (HSDS), described by stochastic differential delay
equations with Markovian switching, is an important class of hybrid stochastic
retarded systems and is frequently used in engineering. In this section, the con-
clusions established in previous sections are applied to the stability analysis of a
class of HSDSs under asynchronous switching.

Consider the following hybrid system which has been discussed in [2] and the
reference therein.

dx(t) = F(t,x(t), x(t —d(t,r(t))), v(t), r(t))dt
+G(t,x(@), x(t —d(,r®))),v(), r(t)dB@), t >0 (3.75)
v(t) = H(t, x(t), u(), r'(t)),

where d; : Ry x . — [0, t]is Borel measurable while F, G and H are measurable
functions with F(¢,0,0,0,i) =0, G(¢,0,0,0,i) =0and H(¢,0,0, i) = 0, for all
t>0andi € .7. Let

F(t,x(t), x(t —di(t,r (1)), u(t), 7 (1))

=F(t,x(t), x(t —di(t,r(1))), H(t, x(2), u(t), r'(t)), r (1))
G(t, x(t), x(t —dy(t,r (1)), u(t), 7 (1))

=G(t,x(t), x(t —di(t,r(1)), H{t, x(t), u(?), r (1)), r (1))

and dy, ) (1) = di (2, r(1)).
We assume F and G satisfy the local Lipschitz condition and the linear growth
condition. Then, the closed-loop system

dx (1) = Fij(t, x(1), x(t — dy; (1)), u(t))dt
Gij(t, x(t), x(t — dy; (1)), u(t))dB(t) (3.76)

+

has unique solution on t > —r.
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Infact, we find that system (3.76) is a special case of (3.4) when f,, t, 90), p,u) =
Fij(t, (0), ¢(—di;(1)), u) and g;;(t, ¢(0), ¢, u) = G;;(t, 9(0), 9(—d1; (1)), u) for
(o, 1,0, )) € €([—71,0; R") xR, x ¥ x <.

In the following, we use Theorem 3.2 to establish a useful stability criterion for

system (3.76).
Corollary 3.5 System (3.76) is SISS if there exist functions o) € Koo, @ €
CH o, x €K, scalars u>1,q>1, Ay >0, 11 >0, k=1,2,0< ¢ < 1 and
V(x(t),t,7(t)) € €>'(R" x Ry x .7 x .7, R,), such that (3.17) and (3.21) hold
and foranyl € N,

LV, yi@),t,7() < =M V(x(@),t,7())
+ An mln {V(yl(t) t —dy; (1), m, n)}

+ X(||M||[o,oo)), 1€ [ty 1), (3.77)
and

LV (x (@), y1(@), 1,7 (1)) <21V (x(), 1, 7(1))
+)‘«21 mnr}]el:lfﬁ{V(yl(t)’ t _dliI(t)vmsn)}

+ x(lullo.00), t € [t2i—1, t21), (3.78)

where yl(t) =x(t —d(t,r())); and there exists )»0 >0, and A = A — qri —
2 >0, k=X +gro + 2o >0, A] € (0, 1) and)»z € (ka, 00) such that

Mt < g, (3.79)
and
prretitiad _ g < 5 (3.80)

Proof From (3.77) and (3.78), there exists 0 < Ag < A; such that

lx(@)] = x (lulljo,00) = LV (x(1), y1(2), 2, 7 (7))
S )"11 mlr,ly V(yl(t)a t— dli/(t)vmv l’l)

— MV (), 1,7 (1)), t € [Py, 1), (3.81)

and
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[x@)| = X lullo.00) = LV (x(2), y1(2), 2,7 (1))
< Ao min V(y,(#), t — dy; (1), m, n)

+ IV (x(t), 1,7 (1), t € [ta_1, ty), (3.82)

forany [ > 0, where A; = A; — Ao > 0, Ao = Ay + Aq, and j(s) = Aalafl o x(s).
Clearly, x (-) € JZ . By using Fatou’s lemma, we have

[x ()] = x(lullo,00) = E{EV (x(1), y1(2), 1,7 (1))}
< —ME{V (@), t, 7))}, t € [t—a, bu—1),

and

X)) > X (lulljo,00) = ELLV (x(1), yi (1), 1, 7 (1))}
< ME{V(x(t), t,F(t)}, t € [ta—1, ta),

whenever (3.19) holds.
Thus, all the conditions in the Theorem 3.2 are satisfied, which means system
(3.76) is SISS.

Corollary 3.6 Under the hypotheses of Corollary3.5, system (3.76) is also o;-
ISSiM. Specially, if a1 (s) = c15P, ax(s) = cas?, where ¢; and ¢, are positive num-
bers, system (3.76) is pth moment ISS.

From the definitions of SISS and pth moment ISS, a SISS/pth moment ISS system
is GASiP/pth moment stable if the input # = 0. A pth moment ISS system is also
SISS. Therefore, in what follows we give only the conditions of the pth moment ISS
for a class of asynchronous HSDSs.

Consider the following system

dx(r) = [A(r@))x (@) + Br@))v(@) + ft, x( —di(t,r (1)), r(1))]ds
+[Cr))x@) + g1, x(t — di(t, (1)), r(1))1dB(1), (3.83)

where x () € R", v(¢) € folo (For such system, the linear case with constant delay

has been discussed in [23] and the references therein.)
Assume that

Lf @, x(t —di(t,r (1)), r(O)] < [Ur(rO)[[|lx (@ —di(t, r(1)))]
lg(t, x(t —di(t,r(1)), r@)| = [U2(r)l|x(t — di(z, r(1)))]
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The mode-dependent controller is designed as
v(t) = K@@' (0)x(t) + u(r), (3.84)
where u(t) is the reference input.
For convenience, when r (¢) = i, for any operate h, let h; denote (i), and y,(¢) =

x(t — dy; (t)). Then, the closed-loop system is

dx(t) = [Ajx(t) + BiK;x(t) + Bju(t)
+ fi(t, yi(0)]dr + [Cix (1) + gi (2, y1(1))1dB(7). (3.85)

Taking V (x(t), 7(t)) = x” (t) P (7 (t))x(t), where P(7(t)) = PT ((t)) > 0, if for
some ¢; > 0,i =1, 2, 3, such that

i Zie 2 |

* X X | <0, (3.86)
ok Mgz |

2o Xii

[ I (3.87)
3 Zs Zais |

* X3 X3 | <0, (3.88)
x ok X3 |

o Xij

|: * —)leXij:| =0 (3-89

where X;; = P, Xij = P!, Pi < prland Pij < ol , By = 521, Do = Xui,

ll’ 1]’

D3 =0, Zin = =35 Xii» iz = CiXiis Tan = —2v Xiis Tyin = Xij, Tz =
W

0, X3 = —1+£ Xij, T3 = CiXij, Tz = Xii Al + AiXii +2BiY;i +mi Xii +
e1B;B] + 11,
Do = (&3 N0 IPT + (L +esHB U217 D™ + A X

2333 = XAT + A‘X,‘/‘ + ZBKXU — 7T(-)~X,‘i + SIB,‘BiT + 82] — )\2X,‘j
T ==& NUGIPT+ A+ &5 )Rl Uk IPD 7'

Let x(s) = sf s2, and if there exists u > 1, ¢ > 1, Ao > 0, such that (3.21),
(3 79), (3 80) hO]d where )Ll =X —qgAi1 — Ao > 0, )\.2 =X+ gAy + Ao > 0,
A] € (0, 1)) and )»2 € (ky, 00).

Now we show that system (3.85) is 2nd moment ISS by use of Corollary 3.6. Let
V(x (), 7)) =xT () P(F(t))x(t), where P(i(t)) = PT((t)) > 0. For any i, j €
&, there exist B; > 0 and B, > O such that P;; < B, and P;; < fo1, where I is an
identity matrix with an appropriate dimension. Since P;; = Pi]T > 0, there exists a
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low-triangular matrix L;; such that P;j = L;;L];. From [20], HFE + E" FTH" <
eHH” 4+ ¢ 'ETE,Ve > 0,when FFT < I. Then, for any time-interval [f5;_, f2),
if there exists A, > 0, A1 > 0,

LV (x (1), y1(0), i, J)

<x"M[A] P; + P,jA; + C! P,;C; + 2P B:K;
), Py — 70 Pijlx (1) 4 2x7 (1) Pij Biu(r)
+2x" @) Py fi(t, i (1) 4+ 2xT (1) C] Pyjgi(t, yi(1))
+el (., yi(D) Py git, yi (1))

< x"(OIA] Pj + PijA; + (1 + 3)C] P;; Ci
+2P;;B;K; + 7}, Pii — 7}, Pj + &1 P, B; B] P;
+e2 Py Pyjlx(t) 4 &7 u” (Du (1)

+ley UG + (4 &5 DB U Iy ()31 ()

< dax" () Pijx (1) + dary] () Pyyi () + &7 ' |u(0)]?,

forany¢; > 0,i =1,2,3,4.
Similarly, when ¢ € [, fy41), if there also exists A; > 0, A;; > 0, such that

LV (x(0), yi (1), y2(t), i, i)
<x"O[A] P + P A; + (1 + &3)C] P; C;
+2P;B;K; + ;i Pii — 7ii pol + &1 P B; B Py;
+&2 Py Piilx (1) + 8f1uT(Z)M(f)

+ex UG IR+ A+ &5 DB U IR Ty] )y (1)

< —axT (O Pux (@) + ray] ) Piyi () + &7 u @)

Then,

Al P + PiiAi + (1 + £3)C] P;;C; 4+ 2P, BK;
+71ii Py — i ol + €1 Pii BiB] Py + &3P, Py + A1 Py < 0, (3.90)
Al Pij+ PijA; + (1 +&)C! P;Ci + 2P, BK;
70 Py — 7y Py + &1 Py BBl Pyj + &P Py — Py <0, (391)
& NUGIPT + (1 + &5 DB UsiIPT — Ay Py < 0, (3.92)
& NUGIPT + (1 + &5 DB Usi 1T — Ay Py < 0. (3.93)

Using P;l to pre- and post- multiply the left term of Egs. (3.90) and (3.92) respec-

tively yields (3.86) and (3.87) hold. Similarly, using Pi;l to pre- and post- multiply
the left term of Eqgs. (3.91) and (3.93) respectively yields (3.88) and (3.89) hold.
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Thus, when let x (s) = & 152 and if there exists o > 1, q > 1, A9 > 0, such that
(3.53),(3.79), (3.80) and (3.86)— (3.89) hold. Then, according to Schur’s complement
and Corollary 3.6, system (3.85) is 2nd moment ISS.

For the stability analysis of given system (3.83) with asynchronous controller
(3.84), we first obtain 1, A1, A2, A1; and A,;, which meet the conditions of Corol-
lary 3.6. If there exist €1, &;, €3, B and B;, such that (3.86) and (3.87) hold, then we
can obtain P;; and the candidate controllers gains K;, where i € .. To verify the
effectiveness of the candidate controllers, we need to solve (3.88), (3.89) and (3.21).
If a feasible solution exists, then one can obtain P;; and the admissible controllers
gains, where i, j € .7, j #i.

Example 3.1 To demonstrate the effectiveness, we choose the parameters in system
(3.85) as A; =[1.5,1.5;0,-3], A, =[-0.5,10;15,2.5], B, =[-1,2;0, —1],
B, =[-2,1;0,2],C; =10.1,0;0,0.1], C, = [0.2,0; 0.1, 0.2], and

filt, 1) = [0 teo _O.f'slin(t): y.
Lt yi(0) = 0 1(Cos(t))2 0.1 s?n(t): yi(0),
&1t y10) = [0 o —O.losin(t)_ N,
et = [T iy [

Then, we have

A1 yi@)] < 10Uy, 2@ yi@)] < 10Uy (0],
lg1(t, yi@)] < NU2allly1@®], g2, 1D < |UnllIy1(B)],

where U;; =[0.1,0.1;0, —0.1], U}, =[0.1,0;0,0.1], U, =[0.1,0; 0, —0.1],
Uy =10.1,0; 0.1,0.1], and d;;(z) = 0.05cos(2t), d»(t) = 0.07sin(z), dp1 (1) =
0.065sin(t), dx(t) = 0.08 cos(t), T = 0.08. Suppose that d = 0.2, IT =[-0.01,
0.01; 0.01, —0.01] and I7° = [—70, 70; 50, —50].

According to above analysis, we choose ¢; = 0.1, &, =0.6, g3 =1.8, A =
20, Ay = 18, Ay = 1.5, Ay = 1.5,8, =8, B, =3 and u = 1.5. There exists Ay =
0.01, ¢ = 2, such that A; = 16.99, 1, = 21.01.

Further, there exists A; = 5.097 € (0, 16.99) and 1, = 21.031 € (21.01, c0),
such that 2 = g > e*® = 1.5034. It’s not difficult to verify that (3.80) holds with
those parameters and ¢ = 0.99, 7 = 7 = 0.01.
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By solving (3.21), (3.86)—(3.89), one can obtain that

p _[01854 0 p . _ [ 02670 —0.0011
= 0 0.1854 | "7 | —-0.0011 0.2703 |’

b, _ [0-1943 0.0446 b _ [0.3826 0.0004
217100446 0.5675 | 7%~ | 0.0004 0.3823 |°

K _ | 140981 2093777 [8.3710 9.5497
1= 1 —0.0706 9.7021 |* 72 = | 1.4964 —9.0793 |-

The simulation results are shown in Figs. 3.2, 3.3, 3.4, 3.5 and 3.6. Among them,
Fig.3.2 shows the Markovian switching signal which includes the real switching
signal and the detected switching signal with non-zero detection delay. The detected
switching signal also includes both the case which r’(¢) satisfies the conditions
of the Corollary 3.6 and the case which r’(¢) doesn’t satisfy the conditions of the
Corollary 3.6.

In the later case, the maximum detection delay is larger than 0.3, then we have
2730t _ 7 = 57,0534 > A,. Moreover, in order to distinguish the r/(¢), we
let value 1.1 and 2.1 to express the mode 1 and mode 2 of r’(¢) which doesn’t satisfy
the conditions. Figure 3.3a shows the curve of Brownian motion w(#); Fig. 3.3b shows
the state trajectories under control input v(¢) = 0, with initial data xo = [3, —1.5].
Obviously, system (3.83) under v(¢) = 0 is unstable, i.e., the open-loop system
is unstable. Figures3.4, 3.5 and 3.6 show the stability of the closed-loop system,
also with initial data xo = [3, —1.5]. Among them, Figs.3.4a, 3.5a and 3.6a show
the stability under the strictly synchronous controller, where the reference input
u(t), respectively, equals to [0,0]7, [3,3]” and [3e=%%, 57077, The so-called
strictly synchronous controller means that the controller in (3.84) relies not on the

Fig. 3.2 The switching 25
signal r(¢) and the detected

—()
-

A (t) which satisfies the desired conditions of this section
r (t) = = = () which doesn’t satisfy the desired conditions of this section

r(t) and r'(t)

) T e ) T |

Time(Sec)
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Fig. 3.3 Response curve of (a). Brownian motion w(t)
w(r) and x (1) 30 ‘ ‘ ‘

H
-10 .
0 2 4 6 8 10
Time(Sec)
(b). Response curve of x(t) with control input
5 210" v=(0,0]"
X
L 11
4 -y,
= 2
x
0
5 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time(Sec)
Fig. 3.4 Response curve of (a). strictly synchronous switching
x(t) with reference input 5 M " " " "
u=10,01" = !
x R
5 ! ! ! ! !
0 2 4 6 8 10
(b). r'(t) satisfies the desired conditions of this section
5 :
il
x 0
P
_5 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
(c). r'(t) doesn’t satisfy the desired
x 102 conditions of this section
5 . : : :
=, e |

X
x

0 2 4 6 8 0

Time(Sec)

the detected switching signal r(¢) but on actual  (¢). It can be inferred from them that
the system under synchronous switching is stable. On the other hand, Figs. 3.4b, 3.5b
and 3.6b show the stability under r'(¢) which satisfies the conditions of Corollary 3.6.

Obviously, the asymptotic stability and the input-to-state stability under r’'(¢)
which satisfies the conditions can be guaranteed. But compared with Figs.3.4a, 3.5a
and 3.6a, one can see that the mismatched controller which caused by the non-zero
detection delay has a great influence on the performance of the system. And moreover,
when #'(¢) doesn’t satisfy the conditions of Corollary 3.6, the system is unstable, as
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Fig. 3.5 Response curve of (a). strictly synchronous switching
: ; 5 : : : ‘
x(t) with rTeference input x,
u=13.3] s ol
X =X,
_5 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
(b). r'(t) satisfies the desired conditions of this section
10 : : : : ‘
= 0 .4/)(2 RO \ ,l
X
_10 x1 L L L L L
0 2 4 6 8 10
(c). r'(t) doesn't satisfy the desired
x 10% conditions of this section
1 : : : : ‘
= x>t
%0 G\
_1 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time(Sec)
Fig. 3.6 Response curve of (). strictly synchronous switching
x(t) with reference input 5
u= [36_0‘4t, 56—0.7t]T = _X1
E
2
_5 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
(b). r'(t) satisfies the desired conditions of this section
"/Xz
1
o “ e
_5 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
(c). r'(t) doesn'’t satisfy the desired
o X 10% conditions of this section
= Xz*’l.
% 0 X,—>\
_2 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time(Sec)

shown in Figs. 3.4c, 3.5¢ and 3.6¢, which corresponds to Figs. 3.4b, 3.5b and 3.6b,
respectively. In addition, from Fig.3.4a, b, we can see that the closed-loop system
(3.85) is asymptotically stable, which is in accordance with the assertion that an
ISS system is necessarily asymptotically stable. In Fig.3.5a, b, due to the effect of
reference input u, the state x () will not converge to zero. But, it still remains bounded.
In Fig.3.6a, b, since |u(t)] — 0 as t — oo, system (3.85) is asymptotically stable,
which is also in accordance with Remark 3.1 in [2].
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3.4.2 Extended Asynchronous Switching

In this section the general Razumikhin-type theorems established in the previous
section will be extended to deal with the input-to-state stability of switched stochastic
nonlinear delay system (SSNLDS).

For a simulation purpose, consider a special class of switched stochastic perturbed
system

dx =[A,x + B,v]dt 4+ g(¢t, x(t — d(¢)),r)dB, (3.94)

where g : Ry x R" x . — R” is unknown nonlinear function satisfying the local
Lipschitz condition and the linear growth condition, and ||g(z, x(t — d(t)), i)|l» <
|U;x(t — d(t))|l2, | - |l denotes the 2-norm, forany i € .. U; is known real constant
matrix, and 0 < d(r) < t. Design v(t) = K,/ ;x(t) + u(t). Then, the closed-loop
system is

dx = [A,x + B, K, x + Byuldt + g(t, x(t — d(t)), r)dB. (3.95)

From Corollary 3.4, one has the following corollary.

Corollary 3.7 System (3.95) is 2nd moment ISS for all t* > m(g—M), where
1

~0 _=0 2 70 <1
[( 7m)(N71)72]n S

—TT T
M=+ pwl— +(— )il x e : ,
M+ Ay —7n0 A+, —n0

(3.96)

ifforalli, j € 7, there exist X = XIT] >0, >0,4 >0, 119 >0, Ay > 0such
that (3.97)—(3.100) hold, i.e., ‘

I X Xii Xii Xii Xii Xii 7]
* — X0 0 0 0 0
il
* x  —4Xp 0 0 0 0
Ti2
S L
* * * * ”i](i—]) Xii-1 0 0 0 < 0’ (397)
* * * * * —%X;(,H) 0 0
TiGi+1)
* * * * * * ¥ ——1X;y O
TiN
L = * * * * * * * -0~ ']
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[—ho0Xi XU -
T } <0, (3.98)
* —wrXi 0 | <o, (3.99)
L+ -0
- T
_)\,2:Xij )ijlljll i| < 0’ (3100)
L J22)

whereH1 = Al'X,‘l' + X”AlT + YJBIT + B,’Y,‘,‘ + €lBiBl-T + ()\,1 +nili)Xii’H2 = X,JAIT +
A Xij + Yi]TBiT + BiYij + BBl — (A + n;-)i)Xij, &1, & > 0; there exist g > 1,
such that hy = A — qrio > 0, and
Mt < g, (3.101)
M4 —7n°<0, (3.102)

where Xz = Ay + g, 5\] e (0, )-\.]) and 5\2 [S ()-»2, 00).

Proof Take V(x(t),t,i, j) = x" (t)P;jx(1), P;j = PAJT. > 0, for any i, j € .. We

I

assume that there exist 81 > 0 and 8, > Osuchthat P;; < 81 and P;; < B,1, where
I is an identity matrix with appropriate dimension.

When ¢ € T(1, t141), the system in (3.95) can be written as

dx = [(A; + B;K;)x + Bjuldt + g(t, x(t — d), i)dB. (3.103)

Then,
LV (x,y,t,i,i) = 2xT P;[(A; + BiK:)x + Bju]

N
1 . .
+ 58" (Y, DPuglt, y, ) + ;n}kxTPikx
< x"[(A; + BiK)" Pii + Pii(A; + B;K;) + &1 P;i B B P;

N
_ 1 . .
+ Znilkpik]x +e uTu+ =pigt (e, v, i)gt, y, i)
k=1 2
<x"[(A; + B;K)" Py + Pii(A; + BiK;) + ey ull3
N 1
+e1PiBB] Py + > mi Pulx + 3B Ul Uiy
k=1

for some &; > 0, where y(¢) = x(t — d(t)), by considering the fact that H FE +
ETFTHT <eHH" + ¢ 'ETE wheree > 0, FFT < I.
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When ¢t € T,(1;, t;+1), the system in (3.95) can be written as
dx = [(A; + B;K;)x + Bjuldt 4 g(t, x(t — d), i)dB, (3.104)

where i, j € ., andi # j.
Similarly, for some ¢, > 0, we have

LV (x,y,t,i, j) < x"[(A; + BiK;)" Pij + P;j(Ai + BiK;) + &, Pi; B; B] P;;
1 _
+ 75 (P — Pip)lx + EﬁzyTUiTUiy + &5 lull3.

For any non-negative definite matrix Q, we have

1 LV (x, y,1,i,i) <xTd;x + 1By U Upy,
x| > [ ———lull2 = o . -
Edmin(Q) SV(x,y,t,l,]) <x ¢;jx+§,32y Ui Uy,

where ¢ = min{ey, €}, Anin(Q) denotes the minimal eigenvalue of matrix Q,
N
@i =(A;+ BiK)" Pi+ Pi(Ai+ BiK)+ & Py B;B] P+ D" 7}y Put Q,
k=1
®;;=(Ai+ BiK;)" Pij+ P,j(Ai+ B;K;)+ &, P;jB; B] P;j+ 7};(P;; — Pij)+ Q.
Further, if
.. T 1 Ty, T T T
LVx,y,t,i,i) <x" Dyx + 5131)’ Ui Uy < —xix" Pix + Aoy” Py, (3.105)
and

1
LV(x,y. 1., j) < x"®jx + zﬂzyTUiTUiy < dax" Pijx + daoy” Pijy, (3.106)

and (3.53) and (3.73) hold, then based on Corollary 3.4, the conclusion is obtained.
Moreover, the conditions in (3.105) and (3.106) can be transformed into

(A; + BiK))" P; + Pi;(A; + B;K;) + & P,;B; B! P;
N

+Znilkpik+Q+)\lPii <0, (3.107)
k=1
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1
EﬂlUiTUi —AioPii <0, (3.108)
(A; + Bin)TPij + P;j(A; + B;K;) + 82P,'jB,-BiTPij

+ ﬂ?i(Pii —Pj))+0—-MP; <0, (3.109)
1
EﬂzUiTUi — JaoP;; <0. (3.110)

where i, j € . and i # j. Using Pilfl to pre- and post- multiply the left term of
Eqgs. (3.107) and (3.108) respectively and denoting X;; = Pii’l, X = Pi;l, =
KiX;; and Y;; = K;X;; yields (3.97) and (3.98).

Similarly, using Pij_.l to pre- and post- multiply the left term of Egs.(3.109) and
(3.110) respectively yields (3.99) and (3.100). It is easy to get that (3.105) and (3.106)
hold, if the LMIs (3.97)—(3.100) hold. By taking proper A; and A;o,i = 1, 2, then there
exists g such that (3.101) and (3.102) hold. And further, by solving (3.97)—(3.100)
and (3.53), we can get the control gains K;,i € ..

Example 3.2 Take the following parameters for system (3.95):
21 -1 2 0.10

A1=|:02], B1=[ 0 _1i|, U1=[ 0 0i|,
30 21 0 0.1

A22[23] 32:[ 0 2] UZZ[O.I 0 }

and

g(t, X(1), 1) = [0.1cos(r)xi (t — d(1)),0]",
g(t, X(1),2) = [0.1sin(t)x2(t — d (1)), 0.1x,(t —d(1))]",

where x(t) = x(t — d(t))d(t) = 0.2sin(¢) with r = 0.2, and

~100 100 ~02 0.2
0 _ 1 _
n _[ 80 —80]” _[0.2 —0.2]‘

Then conditions (3.97), (3.98), (3.99) and (3.100) can be satisfied with A; = 10,
A =59182, A0 =0.1, 20 =0.1, 61 =7, 6, =2, u = 1.38, B = 1.6956, B, =
1.5955, Q = diag[0.1873, 0.1873], moreover,

p [ 04491 —0.0001] , _ [ 0.5877 —0.0005
=1 _-0.0001 0.4484 |*"'> 7~ | —0.0005 0.5877 |’

p, | 05877 —0.0005] ,, [ 0.4483 —0.0034
2171 —0.0005 0.5880 |22 7 | —0.0034 0.4509 |’

K. — 28.9391 7.3873 | 5.8994 —3.4292
=] 7.4055 9.2980 |© " T | —3.3107 —6.9532 |
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Take ¢ = 7.5, then A; = 9.25 and A, = 6.6682, and further, conditions (3.101) and
(3.102) can be satisfied with &; = 9.1575, A, = 6.7349, 70 = 100, #' = 0.2, ! =
0.2 andg0 = 80.Take ¢ = 10,then M = 125.0134and t* > 0.5624s. Then, system
(3.95) is 2nd moment ISS with average dwell time t* = 0.6s.

The first set of simulations are to verify the necessity of performing the research on
extended asynchronous switching. The simulation results are shown in Figs. 3.7, 3.8,
3.9 and 3.10. Among them, Fig.3.7 shows the response trajectory of the Brownian
motion B(z), while Fig.3.8 gives the state response curves of open-loop system
(3.94) with the true switching signal given in Fig.3.9a, and obviously the open-
loop system is unstable. On the other hand, Figs. 3.9b and 3.10b present respectively
the state trajectories of closed-loop system under normal asynchronous switching
controller and extended asynchronous switching controller (note that, it does not

Fig. 3.7 Brownian motion
w(r)

0 2 4 6 8 10

Time(Sec)
Fig. 3.8 State response o X 10"
curves of the open-loop ‘
X, (x =[1,-0.8]")
system 151 o
: = = = x,(x=[1,-08]")| 1
= '
s == (k=108 | s
=3 o xgeel-1080 |
> | [/
Ja
Z i
g
)
% -05 3
7 3
£ -1y 3
-15f
5 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10

Time(Sec)
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88 3 System with Imprecise Jumping Parameters

satisfy the conditions of Corollary 3.7, because the average dwell time of the true
switching is set to be less than 0.5624s), where Figs. 3.9a and 3.10a give the switching
signals including the true one and the detected one respectively, with the same true
switching signal. Comparing the two results, one can find that the false alarm has a
great influence on the control performance, which further verifies the necessity and
importance of the extended asynchronous switching system.

To demonstrate the effectiveness of the results, the stability under several switch-
ing cases are considered, which include the strictly synchronous switching, the
desired extended asynchronous switching and the undesired extended asynchro-
nous switching. The simulation results are shown in Figs.3.11, 3.12, 3.13, 3.14,
3.15,3.16, 3.17, 3.18, 3.19, 3.20 and 3.21, with the Brownian motion B(¢) given in

Fig. 3.9 State response (a) switching signal
curves of the closed-loop 2.5 ‘ ‘
system under normal
asynchronous switching
controller with

u = [2€_O'St, 49_0‘8[]T

r(t) and r’(t)

(b) the state
30 . : e (%, =11,-0.81")
a0l . - - xz(xU=[1.—0.8]T)
I |- x5, =1-1.081")
= 10 | . 31‘ ...... xz(xoz[fl,O.X]T)
> 0 bt ! .I*”! h',.
Yor
o
—10+} [ 1
_20 .
0 2 4 6 8 10
Time(Sec)
Fig. 3.10 State response (a) switching signal
curves of the closed-loop 25 o ‘ ‘ ‘
system under extended ol e
asynchronous switching ot H
controller with 2 15}
— — <
u= [26‘ O.St’ 4e 048t]T = H
= 1 - N
r(t)
05 ‘ ‘ ‘ ‘
0 2 4 6 8 10
X107 (b) the state
8 T T T
6l — 0,108 H
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% 4 Vx0T B
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Fig. 3.11 Switching signal 25 o
/
r(r) and the detected r'(1) ¢(t) which satisfies the desired conditions
r(t) which doesn’t satisfy the desired conditions
2 | ] i [ - - N
2 15t
©
(B 5l e = s L
05 ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time(Sec)
Fig. 3.12 The open-loop x 102
state trajectory 4
X, (x,=[1,-0.8]"
3 L

)
= = = %,(x,=[1,-0.8]")
‘‘‘‘‘ x,(x,=-1.08]")|
o (% =[-1,0.8]")

[0,0]"

The state x(t) with v
|

0 2 4 6 8 10
Time(Sec)

Fig.3.7.Among them, Fig.3.11 shows the the true switching signal and the detected
switching signal in the presence of detection delay and false alarm, where r(¢)
is the true switching signal with the desired average dwell time * = 0.6, r'(¢)
with mode 1.05 and mode 2.05 is the detected switching signal which refers to the
desired detected signal (the detection parameters are /7 0 = [-100, 100; 80, —80],
7' =[-0.2,0.2; 0.2, —0.2], all the conditions in Corollary 3.7 are satisfied), while
r’(t) with mode 1.1 and mode 2.1 is the undesired detected one (here, we take
1% = [1' = [—10, 10; 10, —10], thus (3.102) is not satisfied). Note that both the
mode 1.05 (mode 2.05) and mode 1.1 (mode 2.1) are referred the mode 1 (mode 2),
and these different values are to make clearer illustration.

Figures3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20 and 3.21 show the response
curve of the state trajectories when the average dwell time of the true switching signal
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Fig. 3.13 The closed-loop
state trajectory with

u = [0, 017 under strictly
synchronous switching
controller

Fig. 3.14 The closed-loop
state trajectory with

u = [0.5,0.5]7 under
strictly synchronous
switching controller

Fig. 3.15 The closed-loop
state trajectory with

u = [2€_O'St, 46—048t]T
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switching controller
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Fig. 3.16 The closed-loop 1 :
state trajectory with os X, (x,=[1.-0.8
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is the desired one.Among them, Figs.3.13, 3.14 and 3.15 show the stability under
strictly synchronous switching controller with different reference input respectively.

Similarly, Figs.3.16, 3.17 and 3.18 show the stability under the desired extended
asynchronous switching controller,with reference input u = [0, 01", u =[0.5,0.51"
and u = [2¢7%%, 47087 respectively.

Figures3.19, 3.20 and 3.21 are performed under the undesired asynchronous
switching, with different reference input respectively.

From Figs.3.13, 3.14 and 3.15, the closed-loop system under strictly synchro-
nous switching controller is stable, in other words, one can claim that the designed
controller with considering both detection delay and false alarm (or the designed con-
troller under extended asynchronous controller) are also suitable for the synchronous
case. From Figs.3.16, 3.17 and 3.18, one can find that the designed controller based
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Fig. 3.18 The closed-loop 1
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on the proposed theory can stabilize the switched system with both non-zero detec-
tion delay and false alarm in detection. Compared to Figs.3.13, 3.14 and 3.15, one
can also find that the asynchronous phenomenon caused by the non-zero detection
delay and false alarm has a great impact on the stability. This point can also be further
verified by Figs.3.19, 3.20 and 3.21. From the results in above three cases, one may
claim that the stability of extended asynchronous switching can be guaranteed by a
sufficient small mismatched time interval, it is in accordance with Remark 3.9.
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3.5 Summary

This chapter, we have studied a class of HSRSs under asynchronous switching and
a class of SSNLRS under extended asynchronous switching.

On the one hand, we examine the stability of a class of HSRSs under asynchro-
nous switching, where the detection delay is modeled as a Markovian process. The
Razumikhin-type conditions are extended to the interval of asynchronous switching
before the matched controller is applied, which allows the Lyapunov functionals to
increase during the running time of subsystems. Motivated by asynchronous deter-
ministic switched systems, i.e., the stability of closed-loop systems can be guaranteed
by a sufficient large average-dwell time, by considering the properties of Markov

ybzhao@zjut.edu.cn



94 3 System with Imprecise Jumping Parameters

process, the conditions of the existence of the admissible asynchronous controller
for global asymptotic stability and input-to-state stability are derived. It is shown
that the stability of the closed-loop systems can be guaranteed by a sufficient small
mode transition rate. The main results have also been applied to a class of hybrid
stochastic delay systems, and a numerical example has been provided to demonstrate
the effectiveness.

On the other hand, the input-to-state stability of a class of SSNLRS under extended
asynchronous switching is also investigated. The switchings of the system modes
and the desired mode-dependent controllers are asynchronous due to both detec-
tion delays and false alarms, whose feature is different from normal asynchronous
switching. Through some simplification, an extended asynchronous switching model
is developed. Then, based on Razumikhin-type theorem incorporated with average
dwell time approach, the sufficient criteria for asymptotic stability as well as input-
to-state stability are proposed. It is shown that the stability of such systems can
be guaranteed by a sufficient small mismatched time interval and a sufficient large
average dwell time. Finally, the importance and effectiveness of the stability criteria
for the extended asynchronous switching system are demonstrated by simulation
studies. In the future the developed results are expected to extend to systems with
non-exponential distributed detection delays, false alarms, and non-synchronous con-
troller.
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Chapter 4
Nonlinear Markovian Jump Systems

This chapter presents a direct robust adaptive control scheme for a class of nonlinear
uncertain Markovian jump systems with nonlinear state-dependent uncertainty. In
this scheme the prior knowledge of the upper bounds of the system uncertainties is
not required. Furthermore, the scheme is Lyapunov-based and guarantees the closed-
loop global asymptotic stability with probability one.

4.1 Introduction

Nonlinear jump systems with Markovian jumping parameters are modelled by a set
of nonlinear systems with a transition between multimodels determined by a Markov
chain taking values in a finite set. In [15], the problem of output feedback stabiliza-
tion of a general nonlinear jump system was considered. In [14], a generic model for
jump detection and identification algorithms for a class of nonlinear jump systems
was proposed. The problem of disturbance attenuation with internal stability for non-
linear jump systems was discussed in [1]. Particularly, the problem of robust control
for uncertain nonlinear jump systems was considered in [5], where the designed
controller can guarantee the robust stability of the uncertain system, and a given
disturbance attenuation can also be achieved for all admissible uncertainties. How-
ever, to the best of our knowledge, to date, in the control literature of the nonlinear
uncertain jump systems even including robust stability results for the linear uncertain
jump systems, an implicit assumption is that the system uncertainties can take one of
the following types of uncertainties: norm bounded uncertainty, linear combination
and value bounded uncertainty, and the upper bounds of those uncertainties are gen-
erally supposed to be known, and such bounds are often employed to construct some
types of stabilizing state feedback controllers or some stability conditions [2—4, 6].
Actually, in the practical control problems, the bounds of the system uncertainties
might not be exactly known.
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98 4 Nonlinear Markovian Jump Systems

Fortunately, for such uncertain conditions on the deterministic nonlinear systems,
several types of robust adaptive state feedback controller have been proposed. In [9],
a robust adaptive controller is proposed to guarantee asymptotic robust stability
of the system states in the face of structured uncertainty with unknown variation
and structured parametric uncertainty with bounded variation. In [7], an adaptive
H,, tracking control equipped with a VSC algorithm is proposed for a class of
nonlinear multiple-input-multiple-output uncertain systems. In [17], the proposed
adaptive robust continuous memoryless state feedback tracking controller with o -
modification can guarantee that the tracking error decreases asymptotically to zero.
But for nonlinear uncertain Markovian jump systems, the similar results have not
been reported yet in the control literature.

In this chapter, we consider a direct robust adaptive control scheme for a class of
nonlinear uncertain Markovian jump systems with nonlinear state-dependent uncer-
tainty. The proposed scheme is Lyapunov-based and guarantees the global asymptotic
stability with probability one of the closed-loop systems. Compared with the exist-
ing work in the literature, our model provides a more realistic formulation which
allows the switching component to depend on the continuous states by considering
the x-dependent generator.

The chapter is organized as follows. In Sect.4.2, the problem to be tackled is
stated and some standard assumptions are introduced. In Sect. 4.3, a robust adaptive
control scheme is proposed and the corresponding stability analysis is shown. A
numerical example is presented in Sect. 4.4 to support our theoretical results. Finally
this chapter will be concluded in Sect.4.5 with a brief discussion of the results.

4.2 Description of Nonlinear Uncertain Jump System

Consider the following piecewise nonlinear uncertain jump system:

xX(t) = f(x@),r) + Af(x(2), 1)
+ G (1), r) [GOx (@), 1) + AG(x(8), r) | u(t), 4.1)

where x(¢) € R" is the state vector, u(t) € R™ is the control input. The parame-
ter r, is continuous-time Markov process on the probability space which takes
values in the finite discrete state-space . = {1,2,---, N} with generator IT =

i (x(O))vxn (0, j € ) given by

mij(x(M))A+o(A), iF]j

Plrt+ ) =jlr =it =110 G) A+ o(A), i = j

4.2)

where
Ll\irnoo(A)/A =0 (A > 0),
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4.2 Description of Nonlinear Uncertain Jump System 99

7t;j is the transition rate from i to j, and

T (x(0) = = > wi(x(0) (uij(x(0) =0, j # ),
J#

and r, is assumed to be exactly known at each time.

The functions f(-, ), Af (-, r;) : R" — R" with £(0,r,) =0, G(-,r,) : R* — R*>™iand
GOC, 1), AG(-, 1) : R" — R™>™ are smooth ¥ (R" x .¥) functions of x(¢) for
each value of r, € . such that the system (4.1) is well defined, that is, the only equi-
librium point of the system (4.1) is x(#) = 0 for any initial state x (#y) and any admis-
sible control u(t), where €°°(R" x .¥) denotes all functions on R" x .¥ which are
infinitely continuously differentiable in x(¢) for each r; € ..

We have the following simplified assumptions.

Assumption 4.1 The matrix-valued function /T = [7;; (x(¢))]yxn is continuous at
x(t) = 0, and it satisfies the linear growth condition as follows:

mij(x () = 7;;(0) + v llxOI, i, j €S (4.3)
where y;; is an unknown scalar satisfying
0 <y < +oo0.

We further assume the information of the generator at x () = 0 (when the system
is stable), [77;;(0)]n x v is always known.

Assumption 4.2 There exist unknown matrice M* € R™>%  E* € R™*% and
fixed functions L(.,r):R" — R™>™M_ N( r):R" = R, H(-,r): RY — R™M>m,
T(,r): R* — R2*™ with N(0, r;) = 0, for each r; € .% such that

Af(x(@),r) = G(x (1), r)L(x (1), r)M* N (x (1), 1), 4.4)
AG(x(t),r) = H(x(t), 1) E*T (x(2), 17). 4.5)

Furthermore, the input gain matrix [G°(x(¢), r;) + AG(x(t), r;)] is positive (or
negative) definite for each r, € .%, i.e., there is a known bound A(r;) > 0 such that

GO(x(1), 1) + AG(x(t), 1) > A(r)]

or (4.6)
GO(x (1), 1) + AG(x (1), ;) < =A@

Remark 4.1 The assumption (4.6) may restrict the structure of the system. However,
it do fit for a class of controllable systems as indicated in [16] (see A8 in it).
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100 4 Nonlinear Markovian Jump Systems

Assumption 4.3 There exist unknown matrix K* € R”™*? and fixed functions
G(,r):R* - R™>™m _F(.,r;):R" — RP, with F(0, r;) = 0, such that the fol-
lowing nonlinear jump system

£(t) = f(x(), r) + G (@), r)G(x(1), i) K*F(x(2), ;)
L)) .7

is stochastically asymptotically stable (SAS).
And, there exist V*(x (1), r,)e €' (R" x .#; R,) and continuous function (-, 7,):
R" — R% with V*(0, r;) = 0,1(0, r;) = 0 such that

@i). foranyr, =i € .7,
a. llT(x)li(x) >0, Forany x e R",x #0
b. V*(x(t), i) is continuous and has bounded first derivatives with respect to x(t)
and t.
c. forV x(1) # 0, (ST G (x (1) GT (x(0)(ZE2) is invertible.
(ii). there exists 8;(-), B2(-) € #, such that

Brlllx®I) = VF(x (@), r) < Ba(llx@]D.
(iii). the following equations hold for all i € .

(M)Tf*(xu)) + in- (O)VF(x () + 1T (x())i (x(1)) <0 4.8)
3x(1) i e ij J i i =% :

where €' (R" x .#; R, ) denote all nonnegative functions V (x(¢),i) on R" x .
which are continuously differentiable in x (7).

For the sake of simplicity, we denote the current regime by an index (e.g. f;(-)
stands for f(-,r,) whenr, =i € .¥).

Remark 4.2 This assumptlon is similar to the one in Theorem 2.1 in [16] except
the coupled term 3% j=1 7ij V" which is derived from the Markovian infinitesimal
generator £. Since we have assumed the new closed-loop system (4.7) is SAS, this
assumption is reasonable for the system [10, 11, 13], and the numerical example
provided later also demonstrates the rationality of this assumption.

4.3 Robust Adaptive Control for Nonlinear Uncertain
Jump Systems

In recent years, Deng Hua have established stochastic versions of the Lasalle The-
orem for stochastic system with state multiplicative noises [8, 12]. Following their
studies, we extend the dynamic model to jump system with Markovian jumping para-
meter, and establish Markovian jumping versions of the well-known Lasalle stability
theorem.
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4.3 Robust Adaptive Control for Nonlinear Uncertain Jump Systems 101

Theorem 4.1 Consider the jump system

x(1) = fx @), ut),r, 1), 4.9)
where the definitions of x(t), r;, u(t) are the same as those in system (4.1).

If there exists a Lyapunov function V (x(t), r;, t) and J5, functions o (+), oo (+)
such that

(i). V(O,r,t)=0.
(ii). forafixedr, =i, V(x(t),i,t) is continuous and has bounded first derivatives
with respect to x and t.
(iii). o ([|x@)I)) = V(x(@), 1, 1) < aa([lx(@)]]).
(iv). LV (x(@),r,t) < —W(x(t)), where W(-) : R" — R is continuous and non-
negative.

Then there is a unique strong solution of (4.9) for all xo € R"(xo < 00)

P{lim W(x(1) =0} = 1. (4.10)

Proof Since we have assumed that the system state x () is continuous with respect to
time ¢, then oy (||x(?)[]), o2 (J|x (2)|]), W (x(t)), are all continuous functions of time
t. Then for any s > 0, we define the stopping time

o =inf{t =0:[lx@)]| = s}.

It is easy to obtain that:

e 7, — oo with probability one ~ when s — oo
e 0<|x(®)||<s when0O<t<r

Let t; = min{z,, t} for any ¢+ > 0. The Dynkin’s formula shows that

1
E[V(x(t), r(15), )] < V(xo, 19, 0) — E{/ W(x(r))dt}.
0
Consider the condition (iii) in Theorem4.1 we have
Iy
Efo ([[xID] < aa(l|xol]) — E{/ W(x(z))dt}. (4.11)
0
Since ay(+) is a #4 function, then the left of Eq.(4.11) is nonnegative.
Thus

E{ /0 W)t} < as(|lxol)).

Since W (-) > 0, letting s — 00, t — o0, and applying Fatou’s lemma yields
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E{/O Wx(z)dr} < ax(llxol]).

Hence the following two results hold with probability one:

o0
/ W(x(r))dt < oo, 4.12)
0
tlim V(x(t), r;,t) exists and is finite. 4.13)
—00

Then there must be a probability subspace (£2, %, {-%;};>0, P) exists with prob-
ability one, in which (4.12) and (4.13) always hold. Next we need to proof that in
this probability subspace following limitation always holds:

lim W(x(1)) =0. (4.14)

Since W (x(#)) is a continuous function of system state x(¢) and time t, the rest
of the proof is the same as that of Theorem 2.1 in [12] and it’s omitted here.

Now, let

A
Y = [1m1><m1» Imlxmly ) Im]><m] ]m.xqzm1

E** édiag[E*l, E¥, ..., E*”],

’

where E* (1) denotes the ith column of E*. Then
AG(x(t), 1) = H(x(@), r)YE™T (x(1), 11).
From a practical perspective, the matrix E** represents the parameters of a phys-
ical plant, so E** can be assumed to be bounded, i.e., there exists a known compact

set [7]
iT i
2 E{E* () | EY OE* (1) <B,i=1,2,--,q}

such that
E* € .Qz.

Let
AT i
Q2 {E* (W) | EX (OE () <B+ec,i=1,2,--,q},

where 8 > 0, ¢ > 0 that can be arbitrarily specified by the designer.
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Let E(t), K(t), M(t), Z(t) denote the estimated value of E**, K*, M* and

VAR max {7, j} respectively. Then, the smooth projection algorithm with respect to
i,je

E(¢) can be obtained as [16]:

Proj(E (1), @' (r)))

. T2 il NF () =i
() — aE (t)llcng)(;é)”z(r,)E ) El (1),
if IE@|*>Band ®E(t)>0 (4.15)

[I>

di(r,), otherwise

i=1,2,---,qn.

For some smooth functions @’ (r;) which will be defined in Theorem 4.2. Then we
have the following result.

Theorem 4.2 Consider the nonlinear uncertain jump system (4.1) with the above
assumptions, let Q) € RP*P, 0, € R Q3 € R2*% pe positive definite. Then
the adaptive feedback control law

up, if G s invertible

u, if G% s not invertible (4.16)

u(t) = ’

with

G® =[G (x(t), r) + H(x(0), r)YEOT (x(1), )],

ui

— —1
[G @, ) + HGe0, ) YEOT (x(0),70)]
x [GGr(@), VRO F(x(t), 1) — L), rd MON (x (1), )]
— -1
- [Go(x(t), ) 4+ Hoe (), r)YEOT (x (1), r,)] X 3, 4.17)

FOG0).r) O G(0).r)GT (x(0).r) 2L r0) 4 e

&) MO0 GT ()7 Pobebre | (RG]
uz = if OG0, G (), 0 | 2 (4.18)

e i 1@, r0GT 0. PR | =0
re

V()

N
us = [FOIZ0 3V 0G] o)—5

j=1
[ AV (x(1)
X | (———
dax (1)

)

(4.19)

A% -1
)TG"“(f))G?(x(r))(M)]

3x (1)

guarantees the global asymptotic stability with probability one of the systems. where
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L@@, r) = L@, rdM@ON (@), 1) = Gx (1), r)K (O F (x(0).r¢) ||,
—1,if [Go(x(t), re) + H(x (@), r) Y E**T (x(1), r,)] >0

e(ry) =
Loif [GO(x@), r) + Hx(@), )Y EX*T (x(1),r)] < 0

and K(t) € R™>P, M(t) € R™"*9 E(t) € R™*% and Z(t) € R are estimated
parameters with update laws:

K = 36700, 6" 0. " E T i, er!, (420)

M(r) = %L*?xm, r)GT (x(0), rt)WN*fx(t), 05", 4.21)

—~ 1 N

Z() = 5 IxOl 3 Vi), (4.22)
j=1

1Proj(E' 0. @ ().
) if [Gio(x) + H(x(t), rs)YE@)T (x(t), r;)] is invertible
E®= 0, otherwise ’ (4.23)
(i=1,2,--,my, rr €.%)
A%
ax

D) 2YTHT (x(1), r)GT (x(t), r) (= u" TT (x(1), ry), (4.24)

i (r,), Ei (t) denote the ith column of ®(r,) and E®), respectively.

Proof Consider the Lyapunov function candidate

Vx@), K(t), M(t), E(t), Z(1), 1)

= VE(x(1), 1y) + 17 [E(t)QIET(z)] tir [1\71(1)Q21\71T(t)] tir [E(r)Q3ET(t)] + 72,
(4.25)

where K(1) 2K () — K*, M(t) 2 M(t) — M*, E(t) 2 E(t) — E**, Z(t) 2 Z(t) — Z* denote
the estimated error.

Considering (4.7), we have (when r, = i, x(f) = x)
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LVi(x) = ( ( ))T {f70) +Gi()Li x)M*N; ()}

+ (ﬂ)Tcmx)[G‘?(x) + Hi ()Y E**T; () Ju

*
—( a( )) G;(x)G; (x)K*F;(x) + 2tr [K(t)QlK (z)}
~ T ~ T LI N
+ 2tr |:M(t)Q2M (:)] +2tr |:E(t)Q3E (z)] +2ZZ(0) + D mi()Vix)
j=1
(4.26)

Case I. When GY(x) + H;(x)Y ET;(x) is invertible

LVi(x) —( ) {70 + Gi()Li <)M N; (x) }

+( a( )76, OGO () + Hi () YE@ T, (x)u
oVFE(x)

— (= G H ) YO T
(ava D76 () K Fi(x) 4 2r [K(t)QlK (t):|

+ 217 [M(I)QQM (z)} +2tr |:E(I)Q3F (t)i| (4.27)

By taking (4.17) and (4.20)—(4.23) into account, the above equation is equal to
LVi(x) —( ( hyr ) [ (x) = Gi(x)Li (x) M (1) N; (x) ]

av*( )or *( )T
— (—=HTg; (x)H(x)YE(t)Tu+( Y Gi(x)G:(x)K (1) F; (x)

dx
*()

—tr [K(I)F( N—==)"Gi(0)G; (X)]

*()

+tr |:M(t)N( W ——)TG;(x)L; (x)i|

+2ZZ(1) — Ix()IZ (1) Z Vi) + Z 73 (D) V] (%)

j=1 j=1

+1r [E(t)diagT [Proj (E' (1), ®)) ]] : (4.28)
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From (4.15) and the proof of Lemma 1 in [16] we get
~ . . ov* ~
ir | Ediag” | Proj (' (1), ®)) || = (55 G0 B0 Y E) T
= ir[E(diag” | ProjE o), @) ]| - 1r |:E(t) YTHT(x)GT(x) Vi ]
<0 (4.29)

and E (1) € £25 if E(0) € £2,.

On the other side,

. - N N
) 2ZZ(1) ~ IxOIZ@) D V700 + D mij(0) Vi ()

Jj=1 j=1

N N N N
<O D VI@Z = 2% = IIxOIZ@) D Vi) + 2w OV + D vijllx ()1 VF (x)

j=1 j=1 j=1 j=1

N
<D mi OV (4.30)

Jj=1

A%
(i) —( L ) Gi(X)Li (x)M(1)N; (x) + tr [M(I)N (X)( Vi ) Gi(x)L; (X)]

=—1tr [M(t)N (x)( Vi ) Gi(x)L; (x)] +tr [M(t)N (x)( Vi )TG (x)L; (x)] 4.31)

(iii) ( Vi ) Gi(N)Gi (K@) F;(x) —tr [K(I)F(X)( L) Gi(0)G; (X)]

=tr [K(t)F(x)( TG (x)G; (x)i| —tr [K(z)F(x)( TGy (x)G; (x)] 4.32)
Taking the above results into (4.28), we have
LV, < —1l () (x). (4.33)

Case II. When G?(x) + H; (x)YET;(x) is not invertible

ybzhao@zjut.edu.cn



4.3 Robust Adaptive Control for Nonlinear Uncertain Jump Systems 107
aVz* T * *
LV = S {70 + Gi()Li <)M*N; (x) }

BVZ* T 0 ok
+(¥) Gi()[G; (x) + Hi(x)Y E™T; (x)]u
aV.

- (a—j)TGi(x)@(x)K*E(X) + 217 [1? me%)}

+2tr |:]\7I(t)Q2ﬁT(t)i| +2tr [E(t)QET(I)}

. N
+2ZZ(t) + D i (0)V](x)
j=1
8Vt* T * v,
< (GO @)~ GOLi0)M©ON; ()

ov*
+ <8—2>TGi<x)[G?(x> b H ()Y E* T, (x)]u

WVE .
+ (W) Gi(x)Gi(x)K (1) Fi(x)

avr — PO
+ (W) Gi(x) [Li()YM(1)N; (x) — G (x)K (1) F; (x)]

o I?(t)QI?T(t)} o [M(t)QzﬁT(t)}

~ =T ~~ N
+ 2tr |:E(t)Q3E (t)] +2Z7Z(t) + Zn,-j (O Vix)

j=1
where

8‘/1* T 0 *ok 8(",)
) GG (x) + Hi(x)Y E**T; () [(up——————u3)
dx Irnensl{k(rz)}

(

A% — ~ =
+ (a_)é)TGi(x) [Li ()M (1)N;(x) = Gi () K (1) Fi (x)]

A% .
= Y76, IG0w) + Hy ()Y BT 0 — )
0x min{A(r)}

WVE . —
+ | ﬁo(x)GiT(X)a—l = V.
X

From (4.18) we have:
when || f2(0)GT ()% || = 0,

<l
|
o

when || f00)GT ()25 || # o,
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V=e(f(0)G] (x ) ’) "G} (x) + Hi ()Y E*T; (x)]

(fO(X)GT(x) )

x + 1l £2x )GT(x> ||<0 (4.34)
il FOOGT () B

The discussion of the rest terms in Eq. (4.34) is the same as that of Case I, so we
have

LV < =1 () (x). (4.35)
That satisfies the conditions of Theorem 4.1, so

P{lim If (x(0)l;(x(1)) = 0} = 1.

Since ll-T(x)li (x) >0, x e R",x #0and /;(0) = 0, we have
P{lim x(r) =0} = 1.
=00

That is, the nonlinear uncertain jump system (4.1) is globally asymptotically stable
with probability one.

Remark 4.3 Since we have assumed that [G?(x(¢), ;) + AG(x (1), r,)] is positive
(or negative) definite for each r, € ., robust controller u, can globally be used to
dominate the performance of the controlled system, then the controller u; seems
to be redundant. However, the adaptive estimation of the uncertain matrix E*—the
perturbation term of the controller gain has not been taken into account in #, that must
affect the asymptotic stability performance of the controlled system to some degree
at the beginning of the controller operation. So the application of u; is necessary to
improve the performance of the controlled system, the numerical example provided
later also demonstrates the validity of this design.

4.4 Numerical Simulation

In this section, we consider the following numerical example. A nonlinear uncertain
jump system given by (4.1) in R? with two regimes 7, € .¥ = {1, 2}, where
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_ x1 + 10x; _ 0
Six(@)) = [x + X + 2 ]Gl(X(t))— [ﬁ}
X2 — X1
fHx®) = |: 00x; — 40x2+x1 +x2]

Afa(x (1) =

1
Afi(x(1)) = |: 1+X1 :|x1 (2 1] |:x1xzi|
me ]
1+x1+x1 xix2 |’

Gz(x(t))—|: 1 ] Gy =4+x;,

I4x7+x7

G =—5—x7, AG;=cos(x))[8 8] [Z?r?((;zl))} '

26 = onto [ 0] [ 362
and
—4 —0.5(1 + sin(x2))|x1] 4 4 0.5(1 + sin(x2)) |x1 |
- o
with

L) =x, Lx0)=x, M'=[2 1],
Nix(0) = [xfiz] Nz(x(f))Z[ " }

X1X2
Hy(x(1)) = cos(x1), Hy(x (1)) = cos(xp), E* = [ 83 84],

Ty(x(1) = [ } To(x(0) = [C"S(m}

sin(x;)

cos(xy)
sin(x;)

81, 82, 83, 64 € R are unknown with
51,53 S [—2, 2] ,32,54 € [—1, 1]
Since G (x (1)) + AG(x(2)) is positive definite, and G (x (1)) + AG,(x (1)) is

negative definite, according to (4.6), we can take A(r;) as A} = 1, A, = 2.
Next, let
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Fig. 4.1 Response of system

state variable x = [x; x2]7
with the only using of
u=up 1
-3 I I I I I I
0 1 2 3 4 5 6 7 8
Gi(x(0)) = (1+x7)., Ga(x(®) = (1 +x] +x3),
K*=[-101 =10 =1 —1],
Fix() = [x1 x xix0 23],
Fx(@) =[x x 27 22]", (4.36)
we have
* _ 1 10 X1
f] (x(t)) - [_100 _10} [xz} )
% _ -1 1 X1

So that V" (x (1)), V' (x(¢)), [i (x(t)), [r(x(¢)) satisfying (4.8) can be given by

. 6.7773 0.6115 ]
8.2953 0.5664:
Via@) =x'0 [0.5664 0.4356 | * -

5.6737 0.5848
0.5848 2.3744

9.7962 0.8674
0.8674 3.8343

X1
X2

ﬁua»=[

I

X1

guu»=[

Il

X2
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Fig. 4.2 Response of system 3
state variable x = [x; x2]7
with the combined using of
u={ur, uz}

-3

x1(0) = 2, x(0) = =2, KO0y =[-5-500],
E©0)=[00], M©O)=[10],Z(©0) =1.

Simulation results corresponding to the following initial conditions and design
parameters are shown in Figs.4.1 and 4.2.

It can be observed from Figs. 4.1 and 4.2 that both the adaptive robust controllers
up or u can indeed guarantee the asymptotic stability with probability one of the
closed-loop system. On the other hand, it can be known that the combined controller
u = {uy, u} which considers the adaptive estimation of the controller perturbation
matrix E at the beginning of the controller operation has a rather better dynamical
performance.

4.5 Summary

In this chapter, we investigated the problem of robust and adaptive control for a
class of nonlinear uncertain Markovian jump systems with nonlinear state-dependent
uncertainty. For such systems, a direct memoryless adaptive robust state feedback
controller has been proposed. Based on the Lyapunov stability theory, it has been
shown that the nonlinear uncertain closed-loop Markovian jump systems resulting
from the proposed control schemes are globally asymptotically stable with proba-
bility one. However, an implicit assumption inherent in the above references is that
the current regime of the jumping parameter r, is available on-line, through a perfect
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observation channel, a possible direction for future work is to do the above research
under the condition of less knowledge of the current regime.
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Chapter 5
Practical Stability

This chapter investigatesstochastic systems with Markovian jump parameters and
time-varying delays in terms of their practical stability in probability and in the pth
mean, and the practical controllability in probability and in the pth mean, respec-
tively. Sufficient conditions are obtained by applying the comparison principle and
the Lyapunov function methods. Besides, for a class of stochastic nonlinear systems
with Markovian jump parameters and time-varying delays, existence conditions of
optimal control are discussed. For linear systems with quadratic performance index
and jumping weighted parameters, optimal control is also discussed.

5.1 Introduction

For Markovian jump systems, Lyapunov stability is now well known and has been
studied widely [9, 10, 22]. Whereas, in many real world applications, the systems
may be asymptotic unstable, but stay nearby a state with an acceptable fluctuation.
To deal with this situation, LaSalle and Lefschetz introduce the concept of practical
stability [5]. By means of examples, Lakshmikantham demonstrated that practical
stability is more suitable and desirable in practice [4]. Compared with the classi-
cal Lyapunov stability theory, practical stability can depict not only the qualitative
behavior but also the quantitative property, such as specific trajectory bounds and
specific transient behavior. Thus, it has been widely studied in both deterministic and
stochastic framework [5, 15, 16]. However, for stochastic nonlinear systems with
both jump parameters and time-delays, no much progress has been seen on practical
stability or practical stabilization.

For systems with Markovian jump parameters, the jump linear quadratic optimal
control problem has been considered in [3, 12] by using state feedback and output
feedback, respectively. A detailed discuss on optimal control of linear Markovian
jump systems was given in [11]. For systems with time-delays, there are also many
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works on optimal control, including [2, 8]. However, for systems with both jump
parameters and time-delays, no much progress has been seen on optimal control.
This may be due to the coupling effect of the Markovian jump parameters and the
time-delays, which bring essential difficulty into the analysis.

In this chapter, we will focus on a class of general stochastic systems, which
are with not only jump parameters but also time-varying delays. For such class
of systems, the concepts and criteria of practical stability in the pth mean and in
probability, and practical controllability in probability and in the pth mean, are given.
In addition, optimal control for a class of stochastic nonlinear systems with both jump
parameters and time-delays is studied and some sufficient conditions for the existence
of optimal control are given. Particularly, for linear systems, optimal control and the
corresponding index value are provided for a class of quadratic performance indices
with jumping weighted parameters.

The remainder of this chapter is organized as following: Sect.5.2 provides
some notations and preliminary results. Section 5.3 gives the comparison principle.
Section 5.4 introduces the notations of practical stability in probability and in the pth
mean, and presents the corresponding criteria. Section5.5 introduces the concepts
of practical controllability in probability and in the pth mean, and gives the corre-
sponding criteria. Section5.6 focuses on the optimal control problem. Section5.7
includes some concluding remarks.

5.2 Markovian Jump Nonlinear Systems with Time Delays

Consider the following n-dimensional stochastic nonlinear systems with both
Markovian jump parameters and time-delays:

dx(t) = f(x(@t),x(t — (1)), t,r(t))dt
+gx@),x(t —t()),t,r(t)dB(t), t >0, (5.1

where initial data {x(#) : —2u <60 <0} =¢& € ‘5}0([—2% 0]; R"), t(¢) : Ry —
[0, u]is a Borel measurable function; »(¢) is a continuous-time discrete-state Markov
process taking values in a finite set . = {1, 2, ..., N} with transition probability
matrix P = {p;;} given by

pij(A) = P{rt+4) =j | r(t) =i}

_ | mijA+o(4), i # i
_[1+7Ti[A+O(A)7i=jv A=0
Here 7;; > 0 is the transition rate from i to j (i # j),and 7; = — ijzl,j;éi )

For any given i € .7, f:R"xR" xRy x . - R" and g:R" x R" x R} x
< — R™ are smooth enough to guarantee the system exist a unique solution
x(0, 19, §), which satisfies E(sup, _, 4, |X(0, fo, ) < oo, Vit >ty 1>0T[10];
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B(t) is an r-dimensional Brownian motion defined on the complete probability space
(82, 7, {F:}i=0, P), with £2 being a sample space, .7 being a o -field, {#, },> being
a filtration and P being a probability measure.

Forany given V € €>!'(R" x [—u, +00) x .7, R,), define an operator £V from
R" x [—p, +00) x . to R by

oVi(x,t,i aVix,t,i
( )+ ( )

’SV b t’ j = b 9 t’ )
(x,1,0) o7 o fx,y.t,0)
1 PV (x,t,i Y
+5trlg” (v, 1, i)%g(x, y. 1]+ jzz:,mij, 6,
5.3 Comparison Principle
Consider the following equation
J(t):h(tva(t)s Gt)s atg =¢s (52)

where 0, = 0,(0) =0t +0), 0 € [—u,0]; ¥ € €([(—u,0,RL); h: R x Ry x
€ ([—um, 0], R;) — R is a continuous mapping, h(t, o, v) is nondecreasing with
respect to v for fixed (¢,0) € R x Ry, and A(¢, 0, 0) = 0. Denote by o, (fy, ¥) =
o(t+0,1,v¥),0 € [—n, 0], t> 1y, the solutions of (5.2) with an initial data o;, =
. Denote by o (¢, fo, ¥) the largest solution [21] of (5.2) with oy, = V.

Lemma 5.1 [6] Assume that there exists a V. € €>'(R" x [—u, +00) x .7, Ry)
such that for the function h in (5.2) and any solution x(t) = x(¢t, 1y, &) of (5.1),
E{V(x(t),t,i)} exists fort >ty — u, and

A LV (x,t,i) <h(t,V(x,t, i), V), whereV, =V(x(t+0),t+0,r+0)),
0e[—u,0],ies

(A) ELh(t, V(x,t,0), V)}<h(t, E{V(x,t,i)}, E{V;}),t € R.

If E{V(x(to + 5),t0 + 5, r(tg + 5))} < ¥ (s), s € [—u, 0], r(to +s) € .7, then
E{V(x@),t,D)} <o, o, V), t =1 —

Remark 5.1 Tt is well known that, using the Lyapunov function method, one can get
the property of the solution without solving the equation. Here, based on the condition
(A1) on the function V, we first construct the comparison system (5.2) which is a
time-delayed nonlinear system without stochastic characteristic. Then, we can get
the properties of V and the solutions of stochastic nonlinear systems (5.1). In other
words, one can easily get the properties of the solutions of a complicated system
(5.1) by combining Lyapunov function method and comparison principle.
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5.4 Practical Stability

For convenience, we shall introduce the following definitions:

Definition 5.1 System (5.1) is said to be practically stable in probability (PSiP),
if for any given § > 0, there is a pair of positive numbers (A, p), 0 < A < p, such
that for some 7y € R and any initial data & satisfying E{||||} < A, P{|x (¢, f0, §)| >
p} <6, Vt=>ty— .

System (5.1) is said to be uniformly practically stable in probability (UPSiP), if
the system is PSiP for all 7 € R uniformly.

Definition 5.2 Let positive number pair (A, p),0 < A < p, and 7y be given. Then the
system (5.1) is said to be practically stable in the pth mean (PSpM) with respect to
(A, p, ty), if for any given initial data & satisfying E{||£]|7} < A, E{|x(¢, tp, £)|7} <
p, Vt>1ty— .

System (5.1) is said to be uniformly practically stable in the pth mean (UPSpM)
with respect to (A, p), if the system is PSpM for all ¢, € R uniformly.

As for the notions of practical stability for deterministic system (5.2), we can refer
to [4, 16].

Definition 5.3 A function ¢(u) is said to belong to the class % if ¢ € € (R, R,),
¢(0) = 0 and ¢(u) is strictly increasing in u. A function ¢ (u) is said to belong to the
class 7' ¢ if ¢ belongs to % and ¢ is convex. A function ¢(¢, u) is said to belong
to the class €7 if p € ¥Ry x Ry, Ry), ¢(¢,0) = 0 and ¢(¢, u) is concave and
strictly increasing in u for each r € R,

The following theorems are on the criteria of practical stability.

Theorem 5.1 Under the notations of Lemma 5.1, suppose that (A1) and (A3) hold,
and there exist a function b € & and a function a € €% such that

b(lx®M) = V(x@),1,1) <a(t, |xl), Vie.s. (5.3)

If system (5.2) is practically stable with respect to (A1, b(p1), ty), then system
(5.1) is PSiP.

Proof By (5.3) we have

0 < E{b(x(r +0)D} < E{V(x(r +6),14+0,0)}
< Efa(t + 0, |x10lD}
<a(t+0, E{lxil}).

Here Jensen inequality has been used to get the last inequality. Because the condi-
tion that comparison system (5.2) is practically stable with respect to (A, b(p1), 1),
we have that for any initial data i satisfying ||| < A1, |o (¢, to, ¥)| < b(p1), Vit >
to — . Therefore, o (¢, 19, ¥) < b(p1),t >ty — |L.
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Noticing that for any 6 € (0, 1), there always exists p = p(§) such that b(p;) <
8b(p),theno (¢, 1y, ¥) < 8b(p), Yt > to — . Choose ¥ = a(to + 0, E{llx,+0ll}),
0 €[—u,0]. As a € €7, there exists a A such that for any x4 satisfying
E{llxqy+0ll} < A, 0 < ||¥]] < A;. This together with Lemma 5.1 gives

E{V(x(n), 1,0} =a(t,10,¥) <8b(p), Vit =1y — p. (5.4
By Tchebycheff inequality and (5.4), we can obtain
P{V(x(0),1,1) =2 b(p)} = E{V(x(1t),1,0)}/b(p) <8, Vi =1y — p,
which together with (5.3) leads to

P{lx(t, 19,8)1 = p} = P{b(Jx(t, 10, &)]) = b(p)}
< P{V(x(@),t,i) = b(p)}
<8, Vt>ty— .

Hence, system (5.1) is PSiP.

Theorem 5.2 Under the conditions of Theorem 5.1, if a(t, x) = a(x) and equation
(5.2) is uniformly practically stable with respect to (A1, b(p)), then system (5.1) is
UPSIP.

Proof From the proof of Theorem 5.1, when a (¢, x) = a(x), A is independent of £.
Thus, system (5.1) is UPSiP.

Theorem 5.3 Under the notations of Lemma 5.1, suppose that (A1) and (A3) hold,
and there exist a function b € V' & and a function a € €% such that

b(lx(®)]7) < V(x(0),t,i) < a(t, |lx|"), Vi € .7, (5.5)
and for given ty and (A, p), 0 < A < p, a(ty + s, 1) < b(p),Vs € [—u, 0]. If equa-
tion (5.2) is practically stable with respect to (a, b(p), to), then system (5.1) is PSpM

with respect to (A, p, tp), where a = sup,_, o, a(to + s, 1).

Proof By (5.5) and Jensen inequality, for V0 € [—u, 0] and V 1 > £y, we have

0=<E{b(xt+60)")} = E{V(x(@+0),1+06,i)}
< Efa(t +0, lIxi40l1")}
=a(t+0, E{lxol’}),

which implies that E{V (x(¢), t, i)} exists for all # > #, — . By Lemma 5.1, when
E{V(x(to + ), 10 + 5, r(tg + 5)} < ¥ (s), Vs € [-p, 0], we have

E{V(x(t),t,i)} <o(t,to,¥), Vit>1ty— u. (5.6)
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Suppose that system (5.2) is practically stable with respect to («, b(p), ).
Then, for («, b(p)), ||¥|| < « implies o (t, ty, ¥) < b(p), ¥V t > tn. Now we claim
that system (5.1) is PSpM with respect to (%, p, ty), i.e., if E{||¢]”} < A, then
E{|x(t, ty, )|”} < p, since, otherwise, there would exist #; > 7y and a solution
x(t, to, @) of system (5.1) which satisfies that E{||¢||”} < A and E{|x (¢, to, ¢)|”} =
p. Choose ¥ (s) = a(ty + s, E{||¢s|I”}), ¥V s € [—u, 0]. Then, by (5.5) we would
have

E{V(x(to+s), 1o+ 5,70+ )} <¥(s) <a, se[-pn 0], V] <ec.
Consequently,

E{V(x@®),1,D} =o(t,1t0,¥) < b(p), V=1
This results in the following contradictory

b(p) = b(E{|x(t1, 10, $)I"}) < E{V (x(t1), 1, 7(t1))} < b(p).
Thus, system (5.1) is PSpM with respect to (A, p, f).

Theorem 5.4 Under the conditions of Theorem 5.3, if a(t, x) = a(x) and equation
(5.2) is uniformly practically stable with respect to (a, b(p)), then system (5.1) is
UPSpM with respect to (A, p).

Proof From the proofs of Theorems 5.2 and 5.3, the result can be proved straight-
forward. Thus, the details are omitted here.

Remark 5.2 Different from the Lyapunov stability which focuses on the qualitative
behavior of systems, practical stability focuses on the quantitative properties, and so
is the PSiP except that the preassigned positive numbers (X, p) are dependent on the
size of probability 8. In addition, both practical stability and PSiP do not require that
the systems have equilibria.

To illustrate the validity of Theorem 5.4, we give the following simple numerical
example.

Example 5.1 Let us consider a Markovian jump linear stochastic systems
dx = A(t, r(t))xdt + B(t,r(t))xdB, (5.7)

with the following specifications: r(¢) is a continuous-time discrete-state Markov
process taking values in . = {1, 2} with transition rate matrix I = {7m;;} given

by IT = (—21 _12), and A(t, 1) = —1 4+ (1), A(t,2) = =2+ (1), B(t, 1) =

B(t,2) = 1, where y; and y; are real-valued functions representing parameter dis-
turbances.
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Taking Lyapunov function V (x) = x? and applying infinitesimal generator along
with system (5.7), we have

LV (x) = —x> 4+ 2y (H)x%, forr(t) = 1;
LV (x) = =3x% + 21 (t)x?, forr(t) =2,

whichimplies £V (x) < =V (x) + |y (1)|V (x), where |y (t)|=max{|y (D)1, |y (1)]2}.
Applying Theorem 5.4, we have the following conclusion:
Let A and p (0 < A < p) be given. If |y (¢)| satisfies

t 2
/ (1 +17@Dde <%, Vi =1 (55)
fp
then system (5.7) is UPSpM (p=2) with respect to (A, p).

Remark 5.3 From Example 5.1, we can find that: (i), due to a common Lyapunov
function taken, the transition rate matrix has no effect on the conclusion; (ii), the
inequality (5.8) can also be written as

t 2
/ 7 (Dldt < ln<%> F(t—10), Y1 > 1o, (5.9)
4]

from which, how the practical stability boundary affects the upper bound of the
disturbance can be seen; (iii), the UPSpM (p=2) of system (5.7) can be guaranteed
by (5.8) or (5.9), there is no need for the assumption of sign definiteness on the
infinitesimal generator of the Lyapunov function.

5.5 Practical Controllability

In this section, we will consider the practical controllability of a class of stochastic
nonlinear systems with jump parameters and time-delays.
Suppose the system is of the following form

dx(t) = f(x(@),x(t —t(t)),t,r(t),u(t))dt
+g(x(), x(t — (), t,r(t))dB(t), t > ty, (5.10)

where u(¢) is input, and is supposed to guarantee the existence and uniqueness of
the solution process.
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For convenience, we introduce the following definitions:

Definition 5.4 System (5.10) is said to be practically controllable in probability
y (PCiP-y) with respect to (A, B) if there exist finite time 7" and a control u(-)
defined on [fy, T'] such that all the solutions x(¢) = x(¢, ty, €, ro, ) that exit from
{x € R": |&|| < A}enter into bounded region {x € R" : ||x;|| < B} attime T instant
with probability no less than 1 — y.

Definition 5.5 System (5.10) is said to be practically controllable in the pth mean
(PCpM) with respect to (A, B) if there exist a finite time 7 and a control «(-) defined
on [#, T'] such that all the solutions x(¢) = x(¢, 1y, &, ry, u) that exit from {x € R”" :
E{||€||”} < A} enter into the bounded region {x € R" : E{||x/||”} < B} at the time
T instant, i.e., E{||§]|”} < X implies E{||x7|”} < B.

The following theorems are on the criteria of practical controllability.
Theorem 5.5 Assume that there exists a control law u for system (5.10) such that

the conditions of Theorem 5.1 are satisfied, and there exists a T = T (ty, ) such
that

o(T +s,t0,¥) <yb(B), Vs e [—1(T),0], (5.11)

where o (t, to, V) is the maximum solution of system (5.2) with initial data (to, V),
B € (0, p) is a preassigned constant. Then, system (5.10) is PCiP-y with respect to
(x, B).

Proof By (5.11) and (5.4) we have
EXVx(T+s), T +s,r(T+5s)} <o(T +s,1t0,¥) < yb(p).
Then, by Tchebycheff inequality, we have

P{Vx(T +5s), T +s,r(T +5)) >b(B)}
<E{V&T+s), T+s,r(T+s5)}/b(p) <vy,

which together with (5.3) leads to

P{|x(T +s,1,8)| = B)
= P{b(|x(T +5,1,8)]) = b(B)}
<P{VO(T +5),T+s,r(T+s)>b(B)} <y.

Thus, system (5.10) is PCiP-y with respect to (A, 8).
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Theorem 5.6 Assume that there exists a control law u for system (5.10) such that
the conditions of Theorem 5.3 are satisfied, and there exists a T = T (ty, ) such
that

o(T +s,t, V) < b(B), Vs € [—1(T), 0], (5.12)

where o (t, ty, V) is the maximum solution of system (5.2) with initial data (ty, V),
B € (0, p) is a preassigned constant. Then, system (5.10) is PCpM with respect to
*x, B).

Proof By (5.12) and (5.6) we have

BE{|Ix(T +5)|") < E{V(x(T + ), T + s, (T +5))}
<&(T +s,ty, V)
< b(B).

Thus, E{|x(T + s)|”} < B.

5.6 Optimal Control

This section focuses on the optimal stabilization of n-dimensional stochastic non-
linear systems with jump parameters and time-delays. Precisely, we will consider
system (5.10) and seek for a control law u to minimize the following performance
index

Jigro () =E [/oo G, V(x(t, 10,8, ro, u), 1, r(1)), x(t, 10, &, ro, u), r(t),

u(t, x(t, 1o, &, ro, u))))dt‘to, £, ro] , (5.13)

where the function G satisfies
v=—G(t, v, E{x()}, r(t), E{u(®)}), v(tg) =vo =0, r(to) =ro (5.14)

and G € F[Ry x Ry x R" x ¥ x R™" R, ], G(¢,0, E{x(t)}, r(t), E{u(t)}) =0,
is concave in v, E{x(t)} and E{u(z)}, and nondecreasing in v for fixed (¢, E{x(¢)},
r(t), E{u(t)}) € [tp, 00) x R" x . x R™, nondecreasingin E{x(t)},x(t) = x(t, to,
& ro,u). v(t, tg, vy, E{x(t9)}, ro) denotes the maximum solution of system (5.14)
with initial data vy, E{x(ty)}, ro.

To this end, we now introduce the set % of admissible controls.
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Definition 5.6 By admissible control set % we mean the set consisting of such
control u(t, x,) that has the following properties:

(1) u(t,x;) is adapted to the o-algebra generated by {x;,r(t),t >t} and
u(t,0) =0;

(ii) for any given initial value & € ‘5}0 ([—2u, 0]; R") and ry € ., under u(t, x;)
the system (5.10) has a unique solution x(¢) = x(t, 9, &, ro, u) and E{|x(¢)|”} — O,
t — oQ.

Theorem 5.7 Suppose that (5.5) holds. If

(i) LV(x(),t,i)+ G, V(x(@),t,i), x(t),i,u) >0, Vie .S Yt>1t,Vue

U, and, moreover, there exists a u® = uo(t, x;) such that

(ii) LV (x@),t,i)+ G, V(x@),t,i),x(1),i,u®) =0,Vie. sVt >t

(iii) dx(t) = f(x(@),x(t — (1)), 1,
r@), u’())dt + glx(t),x(t — (1)), t,r(t))dB(t), with x;, =& and r(ty) =
ro, has a unique solution x0(), t > ty;

(iv) v=—G(t,v, E{x°(O)}, r(t), E{u®(t)}) with v(ty) =1° > 0 is practically sta-
ble with respect to (o, b(p)), and has a maximum solution v(t) = v(t, to, Vo,
X0, o) on [ty, 00) satisfying 11_1)1})10 v(t, to, vo, Xo, ro) = 0, where (a, b(p)) is
given in Theorem 5.3,then (1) u® € % : (2) Ji0..r0 u®) = mingeqy Jipero W) =
E{V (xo, ty, r0)}, and (3) under u®, system (5.10) is PSpM with respect to (x, p).

Proof Let x°(t) = x(t, to, €, ro, u®) denote the solution of system (5.10) under the
control u” satisfying the condition (ii). Then, by the proof of Theorem 5.3, we know
that system (5.10) is PSpM with respect to (X, p), and

E{V(x°(t), 1,1)} < ¥(t, 1o, vo, X0, 70) = 0. (5.15)
Further, by (5.5) we have b(E{|x°(¢)|”}) — 0, E{|x°(¢)|?} — 0,t — oo. There-
fore, (1) and (3) hold.

For any given admissible control u € %, let x(¢t) = x (¢, to, &, ro, u) be the corre-
sponding solution of system (5.10). Then, by

E{V(x(0),1,r@)} — E{V(x(1), to, ro)} = E{/ LV (x(s), s, r(s))ds}

and condition (ii) we have

E{V (1), 1, r(0))} — E{V (x(t0), fo, 70)}

= E{/ —G(s, V(x°s), 5, r(5)), x°(s), r(s), u’(s))ds

to, &, 1o}
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Letting t — o0, by (5.15) we have J, ¢ ,, w®) = E{V(x(t), ty, ro)}.

Take arbitrarily a control u* € % . Then, by (5.5) and condition (ii) of Definition
5.6 we have E{V (x*(t),t,r(t))} = 0, t — oo. This together with condition (i)
gives Jy, ¢, (") = E{V (x(ty), t, ro)}. Thus, by the arbitrariness of u™ € % we can
arrive at 2).

Remark 5.4 From Theorem 5.7, we can get Hamilton—Jacobi—Bellman equation

mi%n[EV(x,t,k)—i-G(t, Vix,t, k), x, k,u)] =0, (5.16)
ue

which is similar to the result in [14]. Whereas, the results we have got are valid for
more general nonlinear stochastic systems, especially, for those with both Markovian
jump parameters and time-delays.

Remark 5.5 In Theorem 5.7, condition (i) and (ii) guarantee the existence of opti-
mal control; condition (iii) guarantees the existence and uniqueness of the solutions
to system (5.10) under the optimal control u%; condition (iv) guarantees that, for
system (5.10) under the optimal control u°, the optimal index value J; y, r, @®) =
E{V (xo, to, o)}, further, by the inequality (5.5), the system (5.10) is PSpM with
respect to (A, p).

The following example and corollary demonstrate the validity of our results.

Example 5.2 Consider the following stochastic nonlinear system

dx (1) = [f (x(2), x(t = (©)), 7,7 (1))
+ B(x(t), x(t — T(1)), 1, r(0)u(r)lds
+g(x(@), x(r — (1)), 1, r(1))dB(1),

with initial data {x(0) : —2u <6 <0} =xg € ‘6”%([—2u, 0]; R™), where x € R”",
(1) : Ry — [0, u]isaBorel measurable function; f € €[R x R" x R" x ./, R"],
B:RxR"xR" x . — R"™™ are continuous n x m matrices; u € R"(m < n),
r(t) e & =1{1,2,..., N} is a Markov chain.

Suppose that the corresponding control-free system

dx(t) = f(x(t), x(t — (1)), t,r(t))dt
+ 8 (@), x(t — (1)), 1,r(1)dB(),

is practically stable. Then, there exist V (x,t,i) € €>'(R" x R x .#, R*), which
satisfies

LVx,t,i) =W,y t,i)+

aVix,t,i
WO LD gyt i,
0x
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where
. aVix,t,i) 0V(x,t, i) .
Wx,y, t,i) = + flx,y,t,10)
ot 0x
1 % Y ,
+ EgT(x’ v, t, z)ﬁg(x, v, t,0) + ;ﬂijV(x, t,j) <0.

Similar to the proof of Example 1 in [14], one can get that the control law mini-
mizing the optimal performance index

Jto,xo,r()(u) =F [/ [Ql(-xv Y, Z, V(t)) + MTQ2(t» r(t))u‘to, X0, rO]dt]

is
oV(x,t,r(t))

1
u’ = —EQ;%, r())B” (1) i

where

Q\(x,y. 1,r(1) = =W(x, y, 1, r()) + [u°]" Q2(t, r(0)u’,
the optimal index value is J;, ,.,, = E{V (x(%), to, r0)}.

Example 5.3 We now solve the optimal control problem for a class of linear systems
with jump parameters and time-delays. Suppose the system is of the form

xX(@t)=Al, r@)x@)+ B, r@)x@ —h)+ D, r(t)u(t), Vit > 1y, (5.17)
where x(t) € R”, u(t) € R™ are state and input, respectively. {x(0) : tp —2h <
0 <ty =xp€ ‘5}0([—2}1, 0]; R") and r( are initial function and initial Markov-
ian regime, respectively. The control objective is to seek for a control law u € % to
minimize

o0
J(tg, xo, u) = E [/ x" o, rt)x(t) +u” ()R, r(t))u(t)}dt‘tg,xo,r()] ,
to
(5.18)

where for any i € ./, matrices Q(t,i) and R(t, i) are positive semi-definite and
positive definite, respectively.
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Corollary 5.1 For optimal control problem (5.17)—(5.18), if r(t) =i at time t, then
the optimal control law is

u’(t) = =R, HDT (1, 1) A (¢, D)x (1)

0
— R ', ))D" (1, i)/ As(t, s, Dx(t + s)ds; (5.19)
—h
and the corresponding index value is
0
V(x(ty), to, ro) = x" (o) Ay (to, r0)x (to) + 2xT(to)/ Aa(to, s, r0)x(fo + s)ds
—h
0 0
+/ / xT(ty + ) As(to, 1, 5, r0)x (tg + 1) dr ds, (5.20)
—h J—h

where Ay (t, 1), Ay(t, s, i), A3(t,r,s,1), 1 € .S aren X nmatrices, A\(t, i) are sym-
metric positive definite matrices, As(t,r,s,i) = A3T (t,r,s,1), Ax(t,s,i),
As(t,r, s,1) are differentiable on t, r and s, and are the solutions of the follow-
ing coupled equations,

A, iy + AT, D) AL(2,0) + Ay (2, DA, D) + Q(t, 1) +2A5(t,0, 1)

N
— A (t,)D(t, )R~ (¢, YD (¢, ) A (1, i) + ijAl(t, j) =0, (5.21)
j=1
BT (t,i)A(t,i) — AS (¢, —h,i) =0, (5.22)
dAs(t,5,0)  0Ax(t, s, i)

AT, D) A2, s, i
(t,i)Ax(t,s,i) + a7 %

N
— A1t DD DR (1. DD (1, D) As(t,5.0) + D i Ax(t, 5, j) =0, (5.23)
j=l1

BT (1, 1) As(t, 5, i) — A3(t.s, —h, i) =0, (5.24)
. . . N
0As(t,r, s, i)  0A3(t,r, s, i) 0A3(t,r 5, 0) ,
- - lA t5 DR
ot or ds + ;”1 3(t,r,8, )
— AJ(t,s,0)D(t,))R™'(t, i)D" (t,1) A (2, 7, i) = 0, (5.25)

wherer, s € [—h, 0].
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126 5 Practical Stability

Proof Let
0
Vx (), t,i) = xT () A (t,D)x(t) +2xT(t)/ Asx(t, s, Dx(t + s)ds
—h
0 0
+/ / xT(t+ ) As@t,r, s, D)x(t + 1) drds,
—h J—h

for any ¢ > ty. Apply infinitesimal generator to V (x(¢), ¢, i) and add x7 (¢) Q(t, i)
x(®) +ul )R, D)u(t), we get

L(t,x,u,i)=LV(x,t,i) +xT ()0, i)x(t) + u’ )R, Du(t),

where

N
V(.1 i) = xT ORAT ()AL i) + Ay, i) +2A2(,0,0) + D i Ay, Ix ()
j=1
+xT @ —mwRB @, A ¢, i) — 24T @, —h, D)Ix ()
BA2 1,5 1) 3Az(t.s.0)

0
—I—xT(l)/ RAT (t,i)Ay(t,s,i) +2
—h

ot as
N 0
+ > mijAg(t.s. DIx( + s)ds +xT (¢t — h)/h[ZBT(t, YAyt s, i)
j=1
—2A5(t, s, —h, D)]x(t + s)ds +/0 /0 I R UL L))
—hJ—h at
o0A3(t,r, s, 1) o0A3(t,r,s,1)
a ar h as
N
+ > mij Azt r s, DI+ rydsdr +2u” (DT (e, ) Ar(t, Dx (1)
j=1

0
+2uT 1)DT @, i)/ Ao(t,s,D)x(t + s)ds.
—h

By some simple calculations, under the control (5.19), we can get W lymuo =

0, % lueu0 =2R(t, i) > 0. This verifies the condition (i) of Theorem 5.7.
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Furthermore, under the conditions (5.21)—(5.25), we have

L(t, x,u, i)
N
=xTORAT (1) Ay (1, )+ Q. i)+ pr (1. ) +245(1,0,0) + D 7541, j)
j=1
— A, )D, DR e, i)DT (1, i) Ay, DIx (@) + xT ¢ — (=241 1, =k, i)
0 .
+ZBT(t,i)A1(t,i)]x(t)+xT(I)/ [2AT(z,i)A2(r,s,i)+2L2gt’ 5:7)
—h
N
+ > mij Aot s, j) = 241, DD, ) R™ e, )DT (1,i) Ag(t. 5. 1)
Jj=1
: 0
- 2%]xa +s)ds+xT(t— h)/ BT (1,i) A1, s, 1)
N —h
o0A3(t,r,s,1)

0 0
—2A5(t, s, —h, i)] ><x(t—|—s)ds+/ / XLt +5)[
—hJ—h

dA3(t,r,s,10) AA3(t,r,s,10)
ar as

ot

— AL s, D, R e, DT, iy Ay, r, i)

N
+ > mijAst.r s, Dx(t +r)dsdr =0.Vi € 7.
j=1

So, the condition (ii) of Theorem 5.7 is true.

Similar to [2, 3], we can show the existence and uniqueness of the solution of
the equations (5.21)—(5.25). Thus, the control (5.19) is well defined. Further, the
existence and uniqueness of the solution process to the system (5.17) under the
control (5.19) can be obtained directly from the Theorem 3.1 in [1]. This verifies the
condition (iii) of Theorem 5.7.

We now verify the condition (iv) of Theorem 5.7. From

b= —G(t,v, x°0), r(0), u®(1))

[ —EECoNT 0, r) E(xC(0)} — [E®ONT R, r() E{u®(1)} < 0, v > 0;
1o, v =0,

we have lim v(z, ty, vo, E{x(ty)}, ro) = 0, vy > 0. Thus, the condition (iv) of The-
11— 00
orem 5.7 is true.

Therefore, by Theorem 5.7 and Remark 5.5, (5.19) is an optimal control law of
the system (5.17), and (5.20) is the optimal control index value.

Remark 5.6 Theorem 5.7 and Corollary 5.1 consider the infinite time horizon case
of optimal control of stochastic systems with jump parameters and time-delays. For
the deterministic and finite time horizon case, it is referred to [2]. The results we
have obtained generalize the work of [2, 14] to stochastic systems with Markovian
jump parameters and time-delays.
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128 5 Practical Stability

Remark 5.7 Just as in [2, 13], we need to solve some coupled Riccati equations.
To this end, we can refer to some recent research papers based on LMIs or Riccati
equations, such as [7, 17-20] etc.

5.7 Summary

In this chapter, for stochastic nonlinear systems with both Markovian jump parame-
ters and time-delays, some new definitions and criteria of practical stability (control-
lability) are given, which lay the foundation for our further study, such as the design-
ing of the practical stabilization control law. Besides, a Hamilton-Jacobi-Bellman
equation is obtained, which have been used to get the optimal control law and the
optimal index value.
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Chapter 6
Networked Control System: A Markovian
Jump System Approach

This chapter proposes a packet-based control approach to networked control systems.
This approach takes advantage of the packet-based transmission of the network and
as a consequence the control law can be designed with explicit compensation for the
network-induced delay, data packet dropout and data packet disorder in both forward
and backward channels. Under the Markov chain assumption of the network-induced
delay (data packet dropout as well), the sufficient and necessary conditions for the
stochastic stability and stabilization of the closed-loop system are obtained.

6.1 Introduction

Networked Control Systems (NCSs) are control systems whose control loop is closed
via some form of communication network instead of connected directly as assumed
in conventional control systems [7]. These communication networks include the
control-oriented networks such as the control area network, DeviceNet, etc., but
more and more data networks that are not specifically optimized for real-time con-
trol purpose, like the Internet, have now been popular in NCSs. As is known, a com-
munication network inevitably introduces communication constraints to the control
systems, e.g., network-induced delay, data packet dropout, data packet disorder, data
rate constraint, etc. Despite the advantages of the remote and distribute control that
NCSs brings, the aforementioned communication constraints in NCSs present a great
challenge for conventional control theory [8, 10, 13, 14, 17, 19, 26].

The early work on NCSs has been done mainly from the control theory perspective.
Such conventional control theories as time delay system theory [3, 18, 28], stochastic
control theory [9, 11, 20, 23], switched system theory [12, 21, 27], have found their
applications to NCSs by, typically speaking, modeling the communication network as
one or several negative parameters (mostly a delay parameter) to the system, and then
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132 6 Networked Control System: A Markovian Jump System Approach

conventional methods in control theory can be used to design and analyse NCSs. In
the recent years, the so-called “co-design" approach to NCSs becomes popular. This
approach regards the design and analysis of NCSs as an inter-disciplinary problem
at the boundary of control, communication and computation. Thus the consequent
idea is to explore all the possible perspectives that may help the design and analysis
of NCSs but is not limited to control itself [4, 6, 16, 24, 25]. The co-design principle
has become one of the main streams in the future development of NCSs.

We here report a work on NCSs, within the co-design framework, by more effec-
tively using the packet-based transmission in NCSs. This characteristic means that
one data packet can encode multiple control signals, thus making it possible for us
to send a sequence of forward control predictions simultaneously, impossible in the
conventional system settings. Consequently by designing a comparison rule at the
actuator side, the packet-based control approach can explicitly compensate for the
communication constraints including the network-induced delay, data packet dropout
and data packet disorder simultaneously in both forward and backward channels. This
merit can not be achieved using conventional control approaches as in, e.g., [2, 23],
where the characteristics of the network hves not been specially considered.

We model the characteristics of the round trip delay as Markovian, and then
the closed-loop system is obtained as a Markovian jump system. Within the MJSs
framework, the sufficient and necessary condition for the stochastic stability and
stabilization of the closed-loop system with the packet-based control approach is
obtained. This is an example showing how MJSs can be useful in the area of NCSs.

The remainder of the chapter is organized as follows. Section6.2 presents the
problem under consideration, followed by the design of the packet-based control
approach in Sect. 6.3. For the derived closed-loop system, the stochastic stability and
stabilization results are obtained in Sect. 6.4, which is then verified numerically in
Sect. 6.5. Section 6.6 concludes the chapter.

6.2 Description of Networked Control Systems

The NCS setup considered is shown in Fig. 6.1, where 7, x and 7., x are the network-
induced delays in the backward and forward channels (called “backward channel
delay” and “forward channel delay” respectively hereafter) and the plant is linear in
discrete-time, and can be represented by

x(k+1) = Ax(k) + Bu(k) 6.1)

with x(k) € R", u(k) € R", A € R"" and B € R"*™. The full state information is
assumed to be available.

It is noticed that the forward channel delay ., « is not available for the controller
when the control action is calculated at time k, since 7., ; occurs after the determina-
tion of the control action, see Fig.6.1. For this reason, when applying conventional
design techniques such as those in time delay systems to NCSs, the active compen-
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T
Controller ca.k ————»  Actuator
Network y
-17 Plant
r\t'.ﬂ

Fig. 6.1 The block diagram of a networked control system

sation for the forward channel delay can not be achieved. That is, the control law
using conventional control approach to NCSs is typically obtained as

ulk) = Kx(k — 5, — 750, (6.2)

where 7, and 7, are the network-induced delays of the control action that is
actually apphed to the plant at time k and the feedback gain K is fixed for all network
conditions. The fact that K is fixed implies that this conventional design technique
is conservative in the networked control environment, since it loses the capability of
actively compensating for the communication constraints while the system is up and
running.

A packet-based control approach is therefore designed with explicit consideration
of the communication constraints in NCSs, as detailed in the next section. The control
law based on this approach is obtained as follows, when no time-synchronization
among the control components is available (Algorithm 6.1),

(k) = K (15, 1 o )X k= T — Tl ) 6.3)
when with the time-synchronization (Algorithm 6.2), it is obtained as
uk) = K(t)x(k — ), 6.4)

where 7" = 77, + 77, ;. It is noted that using the control laws in (6.3) and (6.4),
the feedback gains can be designed with explicit consideration of the communi-
cation constraints, thus enabling us to actively compensate for the communication
constraints in NCSs by applying different feedback gains for different network condi-
tions, as is done in Sect. 6.4. In the following remark, we notice that other researchers
have also attempted to achieve such an advantage which however is not realizable in
practice since no supportive design method has been given.
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134 6 Networked Control System: A Markovian Jump System Approach

6.3 Packet-Based Control for NCSs

For the design of the packet-based control approach for NCSs, the following assump-
tions are required.

Assumption 6.1 The controller and the actuator (plant) are time-synchronized and
the data packets sent from both the sensor and the controller are time-stamped.

Assumption 6.2 The sum of the maximum forward (backward) channel delay and
the maximum number of consecutive data packet dropout (disorder as well) is upper
bounded by T, (T;c accordingly) and

- Bp
Tea < 3 1, (6.5)

c

where B, is the size of the effective load of the data packet and B, is the bits required
to encode a single step control signal.

Remark 6.1 Time-synchronization is required for the implementation of the control
law in (6.3), which can be relaxed for the control law in (6.4), see Remark 6.4. With
time-synchronization among the control components and the time stamps used, the
network-induced delay that each data packet experiences can then be known by the
controller and the actuator upon its arrival.

Remark 6.2 In Assumption 6.2, the upper bound of the delay and dropout is only
meant for those received successfully; A dropped data packet is not treated as an
infinite delay. In light of the UDP (User Datagram Protocol) that is widely used
in NCSs, this upper bound assumption is thus reasonable in practice as well as
necessary in theory. Furthermore, the constraint in (6.5) is easy to be satisfied, e.g.,
B, = 368 bit for Ethernet IEEE 802.3 frame which is often used [15], while an 8-bit
data (i.e., B. = 8 bit) can encode 2% = 256 different control actions which is ample
for most control implementations; In this case, 45 steps of forward channel delay is
allowed by (6.5) which can actually meet the requirements of most practical control
systems.

The block diagram of the packet-based control structure is illustrated in Fig. 6.2.
It is distinct from the conventional control structure in two respects: the specially
designed packet-based controller and the corresponding Control Action Selector
(CAS) at the actuator side.

In order to implement the control laws in (6.3) and (6.4), we take advantage
of the packet-based transmission of the network to design a packet-based controller
instead of trying to obtain directly the current forward channel delay as this is actually
impossible in practice. As for the control law in (6.3), the packet-based controller
determines a sequence of forward control actions as follows and sends them together
in one data packet to the actuator,

Ur(klk = Toe x) = [u(klk = Toe ) - uk + Tealk = 7)1, (6.6)
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Fig. 6.2 Packet-based control for networked control systems

where u(k +ilk — 7o), i =0, 1, ..., 7cq are the forward control action predic-
tions based on information up to time k — Ty x.

When a data packet arrives at the actuator, the designed CAS compares its time
stamp with the one already in CAS and only the one with the latest time stamp is
saved. Denote the forward control sequence already in CAS and the one just arrived
by Uy (k1 — Tea.k, |k1 — ) and Uy (ko — Teak, k2 — Tk,) respectively, then the chosen
sequence is determined by the following comparison rule,

Urlk — o, Jk — ) = Ui(ky — Tea gy lko — T0,), i ky — ) < ko — 713

ca.k

. (6.7)
Uy (ky — Teat, |k — T1,), otherwise.

The comparison process is introduced because different data packets may expe-
rience different delays thus producing a situation where a packet sent earlier may
arrive at the actuator later, that is, data packet disorder. After the comparison process,
only the latest available information is used.

CAS also determines the appropriate control action from the forward control
sequence U, (k — 7, [k — 7}7) at each time instant as follows

uk) = uklk — 7, — 2 1) (6.8)

It is necessary to point out that the appropriate control action determined by (6.8)
is always available provided Assumption 6.2 holds and (6.8) is equivalent to the
control law in (6.3) if state feedback is used, i.e.,

u(k) = u(klk — ."i:c,k - T:a.k) = K(Ts*c,k’ r:a,k)x (k — Ts*c,k - tc*a,k)' (6.9)

The packet-based control algorithm with the control law in (6.3) can now be
summarized as follows based on Assumptions 6.1 and 6.2.
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136 6 Networked Control System: A Markovian Jump System Approach

Algorithm 6.1 Packet-based control with the control law in (6.3)

Stepl. Attime k, if the packet-based controller receives the delayed state data x (k —
Tye.k ), then, it

e Reads current backward channel delay . x;

e Calculates the forward control sequence as in (6.6);

e Packs U (k|k — 7,4, ) and sends it to the actuator in one data packet with time
stamps k and Ty .

If no data packet is received at time k, then let k = k + 1 and wait for the next
time instant.

Step2. CAS updates its forward control sequence by (6.7) once a data packet arrives;
Step3. The control action in (6.9) is picked out from CAS and applied to the plant.

In practice, it is often the case that we do not need to identify separately the forward
and backward channel delays since it is normally the round trip delay that affects
the system performance. In such a case, the simpler control law in (6.4) instead of
that in (6.3) is applied, for which the following assumption is required instead of
Assumption 6.2.

Assumption 6.3 The sum of the maximum network-induced delay and the maximum
number of continuous data packet dropout in the round trip is upper bounded by T

and
T<——1. (6.10)

With the above assumption, the packet-based controller is modified as follows

Up(klk — T5c 1) = [ulk — T5e klk — Tse k) - v ulk — Tge ko + Tk — rsc,k)]T~ (6.11)

It is noticed that in such a case the backward channel delay 7. ; is not required
for the controller, since the controller simply produces (T + 1) step forward con-
trol actions whenever a data packet containing sensing data arrives. This relaxation
implies that the time-synchronization between the controller and the actuator (plant)
is not required and thus Assumption 6.1 can then be modified as follows.

Assumption 6.4 The data packets sent from the sensor are time-stamped.

The comparison rule in (6.7) and the determination of the actual control action in
(6.9) remain unchanged since both of them are based on the round trip delay 7; and
in this case the control law with state feedback is obtained as follows, as presented
in (6.4),

u(k) = uklk — 7)) = K(t))x(k — 7))). (6.12)

The packet-based control algorithm with the control law in (6.4) can now be
summarized as follows based on Assumptions 6.3 and 6.4.

ybzhao@zjut.edu.cn



6.3 Packet-Based Control for NCSs 137

Algorithm 6.2 Packet-based control with the control law in (6.4)

Stepl. Attime k, if the packet-based controller receives the delayed state data x (k —
Tsc.k)’ then,

e Calculates the forward control sequence as in (6.11);
e Packs U, (k|k — 74, ) and sends it to the actuator in one data packet.

If no data packet is received at time k, then let k = k + 1 and wait for the next time
instant.

Step2-Step3. remain the same as in Algorithm 6.1.

Remark 6.3 From the design procedure of the packet-based control approach it is
seen that the implementation of this approach requires only: (1) a modified controller
to produce the sequences of the forward control signals in (6.6) or (6.11) and (2)
the so designed CAS at the actuator side to compensate for the communication
constraints. In practice the latter could be a separate control component added to
the system, and the packet-based controller can be designed using any appropriate
methods that can give rise to a good system performance. Therefore, this approach can
be readily implemented in practice. Furthermore, the fact that conventional control
design methods can still be fitted in the packet-based control framework also makes
the proposed approach a universal solution to NCSs.

6.4 Stochastic Modeling and Stabilization

Itis noticed that the control law in (6.3) equals thatin (6.4) if K (7)) = K (. 1, T2 1)
which is generally true in practice. Thus for simplicity only the closed-loop system
with the control law in (6.4) (i.e., Algorithm 6.2) is analyzed.

Let X (k) = [xT (k) xT(k — 1) --- xT (k — 7)]”, then the closed-loop system with
the control law in (6.4) can be written as

Xk+1)=E()Xk), (6.13)

where B (1)) = and I, is the identity matrix with rank n.
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6.4.1 The MJS Model of the Packet-Based Control Approach
Jor NCSs

In NCSs, it is reasonable to model the round trip delay {r;; k = 0, 1, ...} as a homo-
geneous ergodic Markov chain [23]. Here in order to take explicit account of the
data packet dropout, Markov chain {r;; k = 0, 1, ...} is assumed to take values from
M =1{0,1,2,...,7, 00} where 7, = 0 means no delay in round trip while 7z = oo
implies a data packet dropout in either the backward or the forward channel. Let the
transition probability matrix of {zx; k = 0, 1, ...} be denoted by A = [A;;] where

Lij = Plug = jlu=i},i,j e A,

P{ti11 = jlme = i} is the probability of 7; jumping from state i to j, A;; > 0 and

D hj=1LVijed.
jeH

The initial distribution of {7;; k = 0, 1, ...} is defined by
Pltoy=i}=pi,i € A.

According to the comparison rule in (6.7), the round trip delay of the control
actions that are actually applied to the plant can be determined by the following
equation.

(6.14)

T =
k+1 .
* - il —r =14 < 1.

N [1:,;k +1, if gy > 75
Remark 6.4 The data packet dropout is explicitly considered by including the state
7, = oo into the state space A; The data packet disorder is also considered by (6.14):
In our stochastic model the network-induced delay, data packet dropout and data
packet disorder are all considered simultaneously. To the best knowledge of the
authors, there is no analogous analysis available in the literature to date.

Lemma 6.1 {t;k=0,1,...} is a non-homogeneous Markov chain with state
space M* =1{0,1,2, ..., T} whose transition probability matrix A*(k) = [A;‘j k)]

is defined by
> (A
hed =i
> mk)
e I =i

DI (SYINN (6.15)

)‘Tj(k) = ) uedzined =i i =1 1;
> mo J =itk

led =i

0, otherwise.

J =i
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where (k) = pikff) and )Lff) is the k-step transition probability of Ty from state
ie

ito].

Proof The comparison rule in (6.14) implies that the probability event {7 =i} €
o (Tg, Tk—1, - - -, T1, To). Thus it is readily concluded that 7;* is also a Markov chain
since t; as a Markov chain evolves independently. It is obvious that 7; can not be co
and thus its state space is .#* = {0, 1, 2, ..., T}. Furthermore, noticing {7 =i} =
{rf ,=i—-1,uw>i—-1}U{t) |, =i, =i} wehave

1. If j <1, then

Pltl,, = jl' =i} = Pluy = jltf =i} = Plug = jlu > i}
> o )Ay;

l|E.//(,l|2i

> (k)

llé,ﬂ,llzi

2. If j =i+ 1, then

P}y, = jItf =i} = Pluyr > it = i} = Plue > il = i)

> (A,

hed LW\ >i et I,>i

> m k)

116%,112i

which completes the proof.

The following well-known result for homogeneous ergodic Markov chains [1] is
required for the stochastic stability analysis in this section.

Lemma 6.2 For the homogeneous ergodic Markov chain {t;; k =0, 1, ...} with
any initial distribution, there exists a limit probability distribution w = {m;; m; >
0,i € A} such that for each j € M,

Z )\ijni =7, Z T = 1 (616)

el ie

and
|7 (k) — ;] < ng* (6.17)

forsomen >0and0 < & < 1.

Proposition 6.1 For N, that is large enough and some nonzero n* the following
inequality holds
A5 (k) = 25,1 < &, k> Ny, (6.18)
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where A* = [A;‘j] with

2wy
ey i

s ifj<i;
el iy >i
* > > iy
)"ij - e I\ zilhe d Ip>i e l‘f‘] - + 1: (619)
Z m k) - )
e 1) =i !

0, otherwise.

Proof Tt can be readily obtained from (6.15), (6.17) and (6.19).

6.4.2 Stochastic Stability and Stabilization

The following definition of stochastic stability is used.

Definition 6.1 The closed-loop system in (6.13) is said to be stochastically stable
if for every finite Xo = X (0) and initial state 7 = t*(0) € .#, there exists a finite
W > 0 such that the following inequality holds,

o0
ED 11X (R)1*1 X0, 75} < Xg W X0, (6.20)
k=0
where E{X} is the expectation of the random variable X.

Theorem 6.1 The closed-loop system in (6.13) is stochastically stable if and only if
there exists P(i) > 0,i € .A* such that the following (T + 1) LMIs hold

Li)= Y ET(HPGIEQ) — PG) <0.Vi e 4", (6.21)
jed*

Proof Sufficiency. For the closed-loop system in (6.13), consider the following
quadratic function given by

V(X (k). k) = X" (k)P ()X (k). (6.22)

We have

E{AV (X (k), k)} = E{XT (k + DP(f DXk + DX k), tf =i} — XT (k)P (i) X (k)

= > ak+ DX ROET(HPHEGDX K — X" (k) P()X (k)
jeu*

=X"W00 D ak+ DET(HPHEG) — POIX ().
jea*
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From condition (6.21) we obtain

X" D" 25BN P(EG) — PIX(K) < —Amin(—LE)XT ()X (k)
jeH*
< —BIX W), (6.23)

where B = inf{Anin(—L(Q)); i € #*} > 0. Thus for k > Ny,

E{AV(X (k). k)} = X () D A5tk + DET(HPGHEG) — P(H)IX (k)

jeA*

< XT0L D AHET(HPGIEW) — PHIX (k)
jeM*

+ X7 DIk + 1) = ALIET(HPGIEGX (k)
jeH*

< —BIXHDIP + 0" X k) D ETGHPHEG)X (k)

jeM*
< (@n* e = BIIX (k)%

where o = sup{Ana (BT ()P ()E()); j € #*} > 0.Let Ny = inf{M; M e N¥,
M > max{N,,logg ﬁ — 1}}. Then we have for k > N,

E{AV (X (k), k)} < =B*IX (k)| (6.24)

where g* = B — an*eM*! > 0. Summing from N, to N > N, we obtain

N
1
EQY XK < E(E{V(X(Nz), Ny} = E{V(X(N + 1), N+ D}
k=N,

1
< EE{V(X(Nz),Nz)},

which implies that

o0 1 Nz*l
EQ X0} < 5= E(V(X(V2), M) + E{Y X0} (6.25)
k=0 k=0

This proves the stochastic stability of the closed-loop system in (6.13) by
Definition 6.1.
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Necessity. Suppose the closed-loop system in (6.13) is stochastically stable, that is,

o0
EQ X 0IPXo, 75} < X§ W Xo. (6.26)

k=0

Define
) N
X"(mP(N —n, )X () = E{Q_ X" K)QE)X W)X, 17} (6.27)
k=n

with Q(z}) > 0. It is noticed that XT(n)P(N —n, 7,7) X (n) is upper bounded from

(6.26) and monotonically non-decreasing as N increases since Q(t;’) > 0. Therefore
its limit exists which is denoted by

XTm)P(H)X(n) = Nlim XTm)P(N —n, " =i)X(n). (6.28)
— 00
Since (6.28) is valid for any X (n), we obtain
P(i)= lim P(N —n,tF =i) > 0. (6.29)
N—oo
Now consider

E{XTm)P(N —n,t)HX(n) = X" (n+ DP(N —n— 1,5, DX (n + D|X,, 1} = i}

=X"MIP(N —n,i) = D a5+ DET(HPIN —n—1, HE(NIX ()
je*

=XT ) Q) X (n). (6.30)

Since (6.30) is valid for any X (n), we obtain

P(N —n,i) — Z A?‘j(n—f—l)ET(j)IS(N—n—l,j)E(j)zQ(i)>0. (6.31)

jes*
Let N — oo,
P@) — z A+ DET(HPHEG) > 0,Vn
jeAM*
Letn — oo,

P@i)— D MET(HPGHEQ) >0,

jeM*

which completes the proof.
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The result below readily follows using the Schur complement.

Corollary 6.1 System (6.1)is stochastically stabilizable using the packet-based con-
trol approach with the control law in (6.4) if and only if there exist P(i) > 0, Z(i) >
0, K(i),i € A* such that the following (T + 1) LMIs hold

P(i) R( , .
(RT(éi)) é’)) >0,iel (6.32)

with the equation constraints
PW)Z@G)=1,Yi e . #*, (6.33)

where R(i) = [(A})2ET(0)... (W52 ET(D)], Q = diag(Z(0) ... Z(?)} and E(i)
(consequently K (i)) is defined in (6.13).

The LMIs in Corollary 6.1 with the matrix inverse constraints in (6.33) can be
solved using the Cone Complementarity Linearization (CCL) algorithm [5].

6.5 Numerical Simulation

A numerical example is considered in this section to illustrate the effectiveness of the
propose approach. Consider the system in (6.1) with the following system matrices
borrowed from [23],

1.0000 0.1000 —0.0166 —0.0005 0.0045

A— 0 1.0000 —0.3374 —0.0166 B— 0.0896
0 0 1.0996 0.1033 |’ —0.0068

0 0 2.0247 1.0996 —0.1377

This system is open-loop unstable with the eigenvalues at 1, 1, 1.5569 and 0.6423,
respectively. In the simulation, the random round trip delay is upper bounded by 4,
ie, € 4 =1{0,1,2,3,4, oo}, with the following transition probability matrix,

0.1 02 02 0302 O
0.2 0.2 0.2 0.2 0.1 0.1
0.24 0.06 0.48 0.120.1 O
0.150.25 0.3 0.150.1 0.05
03 03 02 0101 O
03 03 0.150.150.1 O

ybzhao@zjut.edu.cn



144 6 Networked Control System: A Markovian Jump System Approach
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Fig. 6.3 Comparison of the practical delays 74 and those after the comparison process 7;7 where 5
on the vertical axis represents a data packet dropout

The limit distribution of the above ergodic Markov chain can be simply obtained
by Lemma 6.2,

= (0.1982 0.1814 0.3000 0.1738 0.1198 0.0268) .
A* in Proposition 6.1 can then be calculated by (6.19) as

0.1982 0.8018 0 0 0
0.2224 0.1767 0.6008 0O 0
A* =] 0.2290 0.1699 0.3612 0.2398 0
0.2186 0.2729 0.2501 0.1313 0.1271
0.3000 0.3000 0.1909 0.1091 0.1000

The comparison between the practical delays 7; and those after the comparison
process using the packet-based control approach t/* is illustrated in Fig. 6.3 where
5 on the vertical axis represents a data packet dropout. From Fig. 6.3 it is seen that
data packet dropout has been effectively dealt with using the packet-based control
approach, by noticing that 7} € .Z* = {0, 1, 2, 3, 4}.

From Corollary 6.1, the packet-based controller is obtained as follows, where it
is seen that for different network conditions, different feedback gains are designed,

K(O) (0 5292 0.6489 22.4115 2.8205) ,

(1) = (O 3792 0.8912 20.2425 5.3681 ) ,
K(2) = (0 0499 0.4266 15.6574 5.7322) ,

3) = ( —0.4400 —0.3003 9.2976 5.0540) ,
K(4) = (—0.8400 —1.3422 2.7723 2.9173) .
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Using the packet-based control approach with the above packet-based controller,
the state trajectories of the closed-loop system is illustrated in Fig. 6.4 with the initial
states x(—3) = x(—=2) = x(—1) = x(0) = [0 0.1 0 — 0.1]7, which demonstrates
the stochastic stability of the closed-loop system.

On the contrary, without the packet-based control strategy, even using the same
controller design method (that is, using K (i) = K(0),i € .#,1i.e., K (0) fixed for all
network conditions), the system is shown to be unstable under the same simulation
conditions, see Fig.6.5. Furthermore, consider the conventional control approach
proposed in [22] where no packet-based control structure was considered and the
feedback gain was designed as K = [0.9844 1.6630 25.9053 6.1679] fixed for all
network conditions, the system is also shown to be unstable under the same simulation

Fig. 6.4 The system is 0.1
stable using the packet-based 0.08

X

control approach %
0.06 | - X

X

0.04 b
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0 50 100 150 200
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packet-based control 6 . «x
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Fig. 6.6 The system is 6 X 10°
unstable using conventional X, (k)
control approach with a fixed )
feedback gain o x,(K) |
) X,(K) o
0
=
<
2| 4
-4+ v 4
-6 | 4
-8 L
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conditions, see Fig. 6.6. These comparisons proves the effectiveness of the proposed
packet-based control approach and the stabilized controller design method.

6.6 Summary

By taking advantage of the packet-based data transmission in NCSs, a packet-based
control approach is proposed for NCSs, which can be used to actively compensate
for the communication constraints in NCSs including network-induced delay, data
packet dropout and data packet disorder simultaneously. The novel model obtained
based on this approach offers the designers the freedom of designing different con-
trollers for different network conditions. The stochastic stabilization result is then
obtained by modeling the communication constraints as a homogeneous ergodic
Markov chain and then the closed-loop system as a Markovian jump system. This
result is based on a better understanding of the packet-based data transmission in
the stochastic fashion and enabled the proposed packet-based control approach to be
applied in practice.
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Chapter 7
Applications Based on the Markov Jump
Theory

This chapter consists of two applications of Markovian jump systems. Section7.2
considers the fault-tolerant control for wheeled mobile manipulators. We are con-
cerned with the output feedback H., control based on a high-gain observer for
wheeled mobile manipulators, since the velocity signals are generally not available
and indirectly obtained from the measured positions. We are to design a mode-
dependent dynamic output feedback controller for wheeled mobile manipulators
which guarantees not only the robust stochastic stability but also a prescribed dis-
turbance attenuation level for the resulting closed-loop system, irrespective of the
transition rate uncertainties. Section 7.3 considers the jump linear quadratic regula-
tor problem of MJLS. A two-level regulating approach is employed to design the
control law and the transition rate control policy. The problem of tuning the existing
policy with respect to a prescribed quadratic performance criterion is formulated as a
gradient projection based iterative optimization. Based on this method, a new policy
is obtained with better performance than that of the initial policy.

7.1 Introduction

Wheeled mobile manipulators have attracted a lot of attention recently [30, 33]. How-
ever, besides exogenous disturbances which may increase the difficulty of reference
tracking control for mobile manipulators, actuator failures (either in wheels or joints)
might suddenly occur during the motion of mobile manipulators. The failed actuators,
where the torque supplied to the motors of one or more joints vanishes suddenly, can
destabilize the system with the possibility of damaging the robot components. When
a free torque fault occurs, the fully actuated manipulator would become an under-
actuated one, to avoid the necessity of stopping the robot when a fault occurs, the
Markovian jump linear system (MJLS) theory was developed to design a procedure
to incorporate abrupt changes in the manipulator configuration.

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2018 149
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Continuous-time MJLS [6, 33] is a hybrid system, which consists of a finite
number of subsystems and a jumping law governing the switching among them. The
jumping law, usually denote by r(¢), is a continuous-time Markov chain representing
the activated subsystem at time ¢, i.e. the mode of the hybrid system. The subsystem
can often be represented by differential equations which determine the evolution of
the physical states, usually denote by x(¢), when the system mode is given. That is
the evolution of the system states depends not only on each subsystem but also the
jumping law. MJLS is widely used to model and analyze the practical systems subject
to abrupt changes, such as component failures, sudden environmental disturbances
and the abrupt variation of the operation point and the like.

MILS method used to model and analyze fault occurrence for robotic systems
is an effective but challenging work. In [37, 38], the proposed control based on
state-feedback Markovian H,, control was proposed for fault-tolerant of three-link
robotic manipulator. However, the wheeled mobile manipulators are obviously dif-
ferent from robotic manipulators due to nonholonomic constraints. Apparently, the
existing control method [37, 38] for robotic manipulators is not suitable for the
robots with velocities constraints. In this Chapter, we develop the methodology via
Markovian control theory to evaluate fault tolerant mobile manipulators. First, the
controller designed in this Chapter is H,, state-feedback, which requires that all the
variables could be directly measured. However, it’s generally not available for the
mobile manipulators. To overcome this practical difficulty, we are concerned with
the output feedback H,, control based on a high-gain observer. Second, for the rea-
son that only the estimated values of the mode transition rates are available, and
the estimation errors, referred to as switching probability uncertainties, may lead to
instability or at least degraded performance of a system as the uncertainties in sys-
tem matrices do [44]. In this part, two different types of descriptions about uncertain
switching probabilities have been considered. The first one is the polygon description
where the mode transition rate matrix is assumed to be in a convex hull with known
vertices [13]. The other type is described in an element-wise way. In this case, the
elements of the mode transition rate matrix are measured in practice while the error
bounds are given [10]. In many situations, the element-wise uncertainty description
can be more convenient as well as natural. In this Chapter, we consider the element-
wise uncertainties in the mode transition rate matrix and based on this we give a
more realistic Markovian model for the mobile manipulator system. The uncertain-
ties are allowed within an uncertainty domain. Third, due to the measurement error
and the modeling imprecision, the parametric uncertainties should be considered. In
the chapter, we consider the system parametric uncertainties and the external dis-
turbances, respectively and independently. A robust output feedback controller is
designed to deal with the system matrix uncertain part, while a Hy, controller is then
presented to realize disturbance attenuation.

Another important part of this chapter is the optimal control problem of MJLS,
which has attracted many researchers [14, 25, 33]. The majority of the studies focus
on the feedback optimal regulator of jump linear system (JLS) under the assumption
that the transition rate of the continuous-time Markov chain are given a prior. This
assumption means that the transition among different regimes is natural or is affected
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by the inherent characteristic of the system itself. However, it is not the case in prac-
tice. Although the switching between different regime is random, the transition rate
or probability is always affected by some external factors. For example, in a failure
prone manufacturing system, an important features is that the failure rate and the
frequency of preventive maintenance of the machine are relevant. In the operational
regime, when the production rate is guaranteed, we can reduce the machine failure
rate and improve the productivity by some maintenance policies including cleaning,
lubrication, adjustment, etc. In the failure regime, some repair policy can be applied
to reduce the dwell time in the failure regime. The wireless networked control system
is another example. The stochastic packet loss is unavoidable in an unreliable wire-
less channel and the package loss rate is affected by the intensity of communication
signal [22].

The relevant studies on such kind of systems are rare. Early study can be traced
back to [40], where the u-dependent transition rates are considered to describe the
system with switches being dependent on the value of inputs or loads. A nonlinear
partial differential equation related to the optimal solution of the x- and u-dependent
problem, was adopted to represent this kind of system. However, the exact solution of
the nonlinear partial differential equation was not fully investigated in that work. In
[24], the discrete-time jump linear quadratic (JLQ) problem was considered for JLS,
where the transition probability is controlled by the choice of a finite-valued input.
The optimal solution for finite and infinite time horizon were both developed. For
manufacturing systems, some models were proposed in [7, 9], where the transition
rate between the operational regime and the failure regime depends not only on
the age of the machine, but also the frequency of maintenance. In [45], under the
situation that the jumping rates are controlled, the JLQ regulator for such JLS is
studied. Recently, based on the long-run average performance criterion, a gradient
potential method was applied to analyze Jump Linear Quadratic Gaussian (JLQG)
model in [45].

In this chapter, we still consider the JLQ problem for the continuous-time time-
invariant MJLS. Differently, the switching between regimes is characterized by
Markov decision processes (MDPs), i.e. the transition rate is determined by the
corresponding actions and this relationship is described by the regime-dependent
policy. Under the assumption that the initial policy is available, our objective is to
improve the quadratic performance index given a prior, by tuning the initial policy.
To this end, we employ a two-level regulating method and prove that the closed-loop
Lyapunov matrix is twice differentiable with respect to the policy variable. Based
on this result, we develop an algorithm to seek for a near-optimal policy by the gra-
dient projection method, and prove the convergence of the algorithm. Furthermore,
we study the near-optimal policy in special cases, and obtain some more practical
results.

The Chapter is organized as follows. The system modeling of Wheeled Mobile
Manipulators are given in Sect.7.2. The output feedback controller is showed in
Sect.7.2.2. Markovian model and some definition and lemma are given in Sect. 7.2.3.
Stability analysis are given in Sect.7.2.4. The simulation studies are showed in
Sect.7.2.5. The problem of the second part of this chapter is formulated in Sect. 7.3,
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where some definitions and assumptions are also introduced. The main results are
provided in Sect.7.3.2, followed by two illustrative examples in Sect.7.3.4. Finally,
concluding remarks are drawn in Sect. 7.4.

7.2 Robotic Manipulator System

7.2.1 Introduction to the System

Consider a robotic manipulator with n, degrees of freedom mounted on a two-
wheeled driven mobile platform. The dynamics can be described as [29]:

M(q)g + C(q.9)q + G(g) +d(1) = B(g)T + . (7.1)

where ¢ = [g],¢I'1" € R" with g, =[x, y,?]” € R™ denoting the generalized
coordinates for the mobile platform and g, € R" denoting the coordinates of the
robotic manipulator joints. Specifically, in this example, n = n, + n,. The symmetric
positive definite inertia matrix M (¢) € R™" = [M,, M,,,; M,,, M,], the Centripetal
and Coriolis torques C(q, g) € R™" = [C,, C,4; Cqy, C4], the gravitational torque
vector G(q) € R" = [G!, GI']", the external disturbance d(t) € R" = [d!;d]",
the known input transformation matrix B(g) € R"*"™, the control inputs t € R",
B(g)t =[z],t]]", and the generalized constraint forces f € R" = [J]x,, 0],
and M,, M, describe the inertia matrices for the mobile platform, the links respec-
tively, M,, and M,,, are the coupling inertia matrices of the mobile platform, the links;
C,, C, denote the Centripetal and Coriolis torques for the mobile platform, the links,
respectively; C,,, C,, are the coupling Centripetal and Coriolis torques of the mobile
platform, the links. G, and G, are the gravitational torque vectors for the mobile
platform, the links, respectively; t, is the input vector associated with the left driven
wheel and the right driven wheel, respectively; and z,, is the control input vectors for
the joints of the manipulator; d,, d, denote the external disturbances on the mobile
platform, the links, respectively, such as a vibration tend to affect the positioning
accuracy of the manipulator; J, € R/ is the kinematic constraint matrix related
to nonholonomic constraints; A, € R’ is the associated Lagrangian multipliers with
the generalized nonholonomic constraints. We assume that the mobile manipulator
is subject to known nonholonomic constraints.

The vehicle subject to nonholonomic constraints can be expressed as J,g, = 0.
Assume that the annihilator of the co-distribution spanned by the covector fields
JVTl @), .-, JVT (gv) is an (n, — I)-dimensional smooth nonsingular distribution A
on R™. This distribution A is spanned by a set of (n, —[) smooth and linearly
independent vector fields H(qy), ..., Hn,—i(qy), i.e. A =span{H(q,), ...,
H, 1(g,)}, which satisfy, in local coordinates, the following relation HT(gq,)
JT(q,) = 0[29], where H(q,) = [Hi(q,), ..., Hp—1(q,)] € R~ Note that
HT H is of full rank. The nonholonomic constraintimplies the existence of vector
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Table 7.1 The modes of operation

Mode Torques

0, 0, 76, 16 T 61
1 Normal Normal Normal Normal e Normal
2 Normal 0 Normal Normal e Normal
3 Normal 0 0 Normal e Normal
4 Normal 0 Normal 0 cee Normal
2natl Normal 0 0 0 e 0

7 € R™!, suchthatg, = H(q,)n. Considering the above equation and its derivative,
the dynamics of mobile manipulator can be expressed as

ME+CEOE+GE)+PD) =, (7.2)
T T TG .
where (7)) = [%MIQH; MV“],C = [;} L Y9() = [hg } L6, 0) =

H™H + HIE HIC tH 7T TH 47T
|:MaVH+CavH Ca ’%_[TV Ta ] "@(t)_[d" da ] :

Remark 7.1 In this example, we choose ¢ = [6,, ), 01,602, -+, 6, 17,0 =[6,, 617,
and % =[t, 1,711, , Ty, 1.

Remark 7.2 The total degree of freedom for the reduced model of the two-wheeled
driven mobile manipulator with two wheels and n, joints is n, = n, + 2.

Now we suppose failures may appear in left wheel and each joint independently.
Then 2"*! modes of operation, can be associated to Table 7.1 depending on which
torque has failed. We partition the dynamics (7.2) into two parts, the operational part
and the failed part, represented by “o0” and “f”’, respectively. Then we can rewrite the
dynamics (7.2) as

I:Moo(é-) Mof(é-):| |:§0i| + I:Coo(é-’ g) Cof(é-v g-) ] I:é-o i|
Mfo(;‘)Mff({) ;f Cfo(é‘v {)Cff(gs {) gf

Go do(t) Boo Bof To
+ + = ,
|:Gfi| [df(’)] [Bfo B |10
where M,,,M,¢,M ¢,, M s: the coupling inertia matrices of the operational parts and
the failed parts; Cy0,Cof,C 10,C ry: the Centripetal and Coriolis torque matrices of the
operational parts and the failed parts; G,,G ;: the gravitational torque vector for the

operational parts and the failed parts respectively; d,(t),d s (¢): the external distur-
bance on the operational parts and the failed parts respectively; B,,,B,¢,B r0,B s the
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known full rank input transformation matrix of the operational parts and the failed
parts; 7,: the control input torque vector for the operational parts of the manipulator;
7s: the control input torque vector for the failed parts of the manipulator satisfying
7y = 0. After some simple manipulations, we obtain

Bt, = M(0)E, + H(C. &) +d(¢, 1), (7.3)

where

B = Boy — Mos M Byo,

= Moo — Mg M7 My,

H(,8) = Ci(&, O+ Ca(8, D)y + Gy — Mop(DM 57 ()G 1(2),
d(Z,1) = do(t) = Mos ()M 7 (0)dy ().

=

with Cl (§7 é—) = C(m({v ;) - MofM;fl (;)Cfo(ga g) and C2(§7 é—) = Cof(é'v C) - Mof
XM} (§)Cpp (L. 0).

The fully operatlonal mobile mampulator can be represented by (7.3) with B = B,
M) = M), H(, {) c(, g“)g“ + G, d(¢,t) =d(t). Then, by linearizing the
dynamics (7.3) around an operation point with position go and velocity go, we have
the following linear system

% = Ao, Lo)x + B(Go)u + W (go)w
[z =Cx + Du 7
where
I 1
({o,fo):[ RGeS 1(¢>H@ Oy M) (G, ;))}

- 0 - 0
B(%) = [M‘l(g“)f?] W (%) = [M—l({):|
& %o

and x = [;d -, {"1 — f]T represents the state tracking error, z, u = t,, w = d(t)
represent the controlled output, the control input and exogenous disturbance, respec-
tively, and C and D are constant matrices defined by the designer and are used to
adjust the Markovian controllers.
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7.2.2 OQutput Feedback Controller Based on High-Gain
Observer

Since it may be difficult to measure the velocity signal, only the position signal
¢? — ¢ is measurable, we need to estimate x to implement the feedback control.
Therefore, a high-gain observer is employed to estimate the states of the system.

Lemma 7.1 Suppose the function y(t) and its first n derivatives are bounded. Con-
sider the following linear system

Eél 252’ 652 ='§3v ) Eén—l =‘§n’

. (7.5)

€y =—b1&§ — b1 — - — b 16— &+ y(@),
where the parameters by to b,_ are chosen so that the polynomial s" + bys" '+
-« + b,_15 + 1 is Hurwitz. Then, there exist positive constants hy, k =2,3,...,n
and t* such that for all t > t* we have

kakrl —y® = ey ®D = -1 (7.6)
€

|‘ng1:1'—y(k)| Sé€hr, k=1,...,n—1 (7.7)
€

where € is any small positive constant, y = &, +b1&,_1 + ...+ b,_1E and |y P | <
hi. ¥ ® denotes the kth derivative of .

Proof The proof can be found in [1].

Let the measured output y(r) = [y{ (1), yI (1), ..., yan )] € R™ be the posi-
tion tracking error signal {¢ — ¢ measured in the ng-link manipulator system (7.4).
Applying observer (7.5), we define the following variables (j = 1,2, ..., n,):

e&j1 = &), €€jp = —biEp — & + (1),
T T T N T EJTZ(I) T
§;1) =15;,0),5,01, xj(1) = ly; (t),T] .

Transform the above equations into matrix form, we get

[é(r) = ME@D) + Ny(1) (78)
X(t) = Mp&@) + Npy (1) '

ybzhao@zjut.edu.cn



156 7 Applications Based on the Markov Jump Theory

where

D=6/ 0,6 0,....5 01, 2O=3{0,20),.... % O,
M =diag{y, ..., M, ), M, =0, é; —1/e, —%1;
N =diag{®,.... My}, N, =0, 1/€]";

M, =diag{M,,, ..., E)lenq}, Mm,; =10,0;0,1/€l;
N, =diag{Mpi, ..., Mpa,}, N,y = (1,017,

with the chosen parameters b; so that the polynomial s24+b ;s + 1 is Hurwitz, for
J=12,...,n4.
The output feedback controller on observer (7.8) is given by

u(t) = Kx(1), (7.9)

where K is the controller gain to be designed.

Remark 7.3 The output feedback controller proposed here is easy to implement
because it is simply a state feedback design with a linear high-gain observer without a
priori knowledge of the nonlinear systems. Unlike other exact linearization approach,
it is not necessary to search for a nonlinear transformation and an explicit control
function. Moreover, the high-gain observer has certain disturbance rejection and
linearization properties.

7.2.3 Markovian Model and Problem Statement

The Markovian model developed in this section not only contains the transition
among the operation points in system (7.4), but also describes the probability of a
fault occurrence. For a mobile manipulator with 2 wheels and n, joints, we have
totally 2"«*! possible configurations as discussed in Sect.7.2.1. Now we proceed to
consider the linearization configurations.

Note that although the transitions among the plant linearization points are not
a genuine stochastic event in contrast with the moment of a fault occurrence, the
Markovian techniques can be applied in this case since the Markovian transition
rate is related with the expected mean time the system is supposed to lie in each
state of the Markovian chain. We may consider the workspace of each joint with
a positioning domain which range from ¢, to ¢,,, with the velocities set to zero,
and divide the workspace into n,, sectors. For each range of (¢,, — ¢p,)/n, of each
joint, it is defined as a linearization point for the manipulator. For each linearization
point, there exist 2 sets of matrices A({O, éo), B(g“o), W(;‘o), C.D corresponding
to all the 277! configurations. Hence, the Markovian modes are the manipulator
dynamic model linearized properly according to (7.4) in these linearization points
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for all configurations. The choice of these sectors and the number of the sectors n,,
need to be firstly decided in order to guarantee the effectiveness of the Markovian
jump model.

Then, the number of all the possible combinations of positioning of the 2 wheels
and n, joints 0y, 6,, . . ., 6,, may be computed as 2”“+'n2“+2, i.e. n + 2 linearization
points with 2”““n;‘fr2 modes are found, which means a 2”““n;',“+2 X 2”““nf,‘,“r2
transition rate matrix I7 is needed. To distinguish the operation point level and
the fault occurrence level more clearly, we may partition 7 into 2"<*! blocks with
each block be an n+? x n/«*? matrix. An illustrative example will be shown in
Sect.7.2.5.

Remark 7.4 The dimensions of the matrix sets {A(;O, §'0), B((O), W(;O), C,D } may
be different among all the configurations. While applying Markovian method, lines
and columns of zeros may be introduced to make sure that the system matrix sets of
all modes have the same dimension.

Remark 7.5 Note that all the elements of IT are selected empirically, which means
they cannot be precisely known as a priori. In order to tackle the estimation error,
we consider a more realistic way where the nominal estimated value of the transition
rate matrix is measured in practice and error bounds are given. This problem will be
described in detail in Sect.7.2.4.

Let (2, F, {%:}1>0, P) be a complete probability space with a filtration {.%#; };>0
satisfying the usual conditions (increasing and right continuous and %, contains
all P-null sets). We denote by L,[0, co) the Hilbert space formed by the stochastic
process z = {z(t); t > 0} such that, for eachz > 0, z(¢) is a second order real valued
random vector, .%;-measurable and ||z|[3 £ [ E{||z(1)]|*}dt < oo. Consider the
following hybrid system:

x(t) =A@ @®)x@) + Br@)u(@) + Wr@)w(t)
z2(t) = C(r(t)x(t) + D(r(t))u(t)

(@) = E@r(1))x(1)

x(0) = xo, 7(0) =rg

(7.10)

where x(-) € R", u(-) € R™, z(-) € R, y(-) € R™ are, respectively, the state tra-
jectory, the input, the controlled output, and the measured output for the system
(7.10). w(-) € R™ 1is the exogenous disturbance signal that belongs to L,[0, c0).
A(), B(:), W(), C(-), D(-), E(-) are real constant matrices with appropriate dimen-
sions. These matrices are given by the system (7.4). r(-) is a homogeneous Markov
process taking value in a finite state space . = {1, 2, ..., N} with generator /T
showed in (1.3). The probability initial distribution of the Markov process is given
by u = (u1, 42, ..., uy) in such a way that P(ro = i) = u;. As mentioned in
Sect.7.2.1, both system matrices A(r(¢)), B(r(¢)) and the mode transition rate matrix
IT are not precisely known as a priori. The following Assumptions are in order.
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Assumption 7.1 Divide the parameter matrices A(r(¢)), B(r(¢)) into a nominal part
and a perturbed part

A(r(t)) = A(r(t)) + AA(r (1), 1), B(r(t)) = B(r(t)) + AB(r (1), 1), (7.11)
where the uncertain parameters are assumed to be in following forms:

AA(r(1),1) = Hy(r(0) F(r (1), 1) L(r (1)), (7.12)
AB(r(1),1) = Hy(r(t) F(r (1), 1) L(r (1)), '
where H,(r(t)), Hy(r(¢)), L(r(t)) are known constant real matrices of appropriate

dimensions, while F (r(¢), t) denotes the uncertainties in the system matrices satis-
fying FT(r(t), ) F(r(t), 1) < I,Vr(t) € <.

Assumption 7.2 The mode transition rate matrix belongs to the following admissi-
ble uncertainty domain:

D 2 + Al : |Amij| < &y, &) > 0,Vi, j € S, j#i}, (7.13)

where IT £ (7; ;) is a known constant transition rate matrix, while AT £ (Arij)
denotes the uncertainty. Foralli, j € .7, j # i,7;; (> 0) denotes the estimated value
of ;;, and the error between them is referred as to Am;; which can take any value in
[—Eij, 8,’j]; For all i, ] € y, ﬁii = - Zjey,j;éi 7_le and Aﬂii = - Zje,jf’,_j;éi An’]

Remark 7.6 The estimation error bound ¢;; could be determined empirically from
an admissible portion of the nominal value 7r;; which is the estimated value of the
mode transition rate after lots of statistics in practice, for example, 10% of r;;.

A dynamic output feedback controller based on the high-gain observer is adopted
to solve the problem of fault-tolerant manipulator control described in Sect.7.2.1.
According to (7.8) and (7.9), the linear mode-dependent output control law is
given by: )

{é(t) = ME(t) + Ny(1) (7.14)
u(t) = Kr@)Mp&() + K(r)N,y(1) '

Itis possible to incorporate both systems (7.10) and (7.14), into a closed-loop system,
with the augmented state variable ¢ (t) = [x” (¢), €7 (1)]" € R?" for any ¢ > 0. The
state and output equations for this 2n-dimensional system may be written as:

[ £(t) = Ag(r(t)E (1) + Wa(r(1)w(2) (7.15)

z(t) = Ca(r))5 (1)
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where
_ Aan BUr@)KFr@)M
Au(r(t) = [NEW)) v ”]
Agi1 = A(r(@)) + Br(O)) K (@))N,E(r (1)),

_TCr) + DrO)KrO)IN,EC@) ]
C“(’(’”‘[ DG@)K ()M, ] ’
Wa(r(1)) = [W(g(’”] .

For simplicity, in the sequel, let M; denote the corresponding matrix, M (r(t)), for
eachi € .. The weak infinitesimal generator, acting on functional V : C(R" x .% x
R.) — R,isdefined by £V (x(t),i,1) = Alin(} % XA{E[V(x(t+ A),r(t+ A),t+

A)|x (@), r(t) =il — V(x(¢), 1, t)}. For further references on the associated operator
of the hybrid system (7.10), we suggest the reader to see related work in [27, 41].

Definition 7.1 [18] The system (7.10) with w = 0 is said to be stochastic stable (SS)
if f0+°° E{||x(t; xo, r0)||*}dt < 400, for any finite initial condition xy € R" and any
initial distribution for ry € ..

Lemma 7.2 [43] Given matrices Q = QT, H, E and R = R"T > 0 of appropriate
dimensions, Q + HFE + ETFTHT < 0, forall F satisfying FT F < R, ifand only
if there exists some real number % € R* such that Q + \HH” + A"'ETRE < 0.

Lemma 7.3 [34] Given matrices D, F and H of appropriate dimensions with F
satisfying FTF < 1. Then for any scalar ¢ > 0 and vectors x, Yy, 2xTDFHy <
IxTDD"x + ey"HT Hy.

7.2.4 Stability Analysis

7.2.4.1 Robust Stochastic Stability

Firstly, we consider the robust stochastic stability for the system (7.10) with uncer-
tainty domain (7.11) when w = 0.

Theorem 7.1 The Markovian jump system (7.10) (w(t) =0) with uncertainty
domain (7.11) and dynamic output feedback control law (7.14) is robustly sto-
chastic stable if, for any i, j € ., i # j, there exist positive-definite matrices
X;, Y, e R, K; € R"*" and positive real numbers A;; such that the LMIs (7.16)
holds
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[ @11 @iy Wi 0 Iy Iy I3 Iy Ts;
x Py 0 Wy 0 M;KiT MpTKiTLiT 0 0
* % —A; 0 O 0 0 0 0
*  x  x —A; 0 0 0 0 0
* ok * ¥ —l 0 0 0 0 <O (7.16)
* * * * * —1 0 0 0
* % * * % * -1 0 0
* * * * * * * -1 0
| * * * * * * * * —1 |

- - _ Aij
where @]1,‘ = AlTXl + X,‘Ai + Z 77.’,‘ij + ZjEY,j#i Tlgizjln + EiLl-TL,‘, @12,‘ =

jes
EI'N"Y;, i = XiHy, Ioi = E] NI K], Iy = EFNJ K[ L], I'ii = X;B;, I'5; =
- Aii
XiHy, $p = MTYz +Y:M + z 7Tinj +Zje5//,j;£i Tlgizjlny ¥, = [X; — Xy,
jes
Xi—Xo, ., Xi = Xi 1, Xi — X1, .., Xi — XN W =Y, = Y1, Y, =Y, ...,

YVi—Yi,Yi =Y, ... =Yy, A =diag{hily, hinkn, -, M-y Ins Migivn
Inv“-s)ViNIn}-

Proof We consider the equivalent closed-loop Markovian jump linear system (7.15)
without disturbance (i.e. w(t) = 0). Foreach r () = i, i € ./, we define a positive-
definite matrix P; € R?"*?" by P; = diag[X;, ¥;]. Then we construct a stochastic
Lyapunov functional candidate as V (E (t),i,t) = ET P g: (t) Applying the Markov-
ian infinitesimal operator, we have

SVEM).i.0) = OALP + PAG+ > myPHE@. (117
jes
With (7.11), (7.12) and (7.13), we have

- - LTFT X; Hyi
LVE (@), i.1) = gT(w(Qi - [ o } [H5X: 0] + [ ‘0 ] [FiL; 0]

E'NTKTETNTKTLT[1, 0 | BYX; 0
+ ﬁp+|: i p o1 4 pi l:||:nu :||: i i i|
jezy] gty MZKiT M;KLTLzT 0 FiT Hb];Xl 0

X;B; X;Hy; |[1,,0 [ KiN,E: KM,
0 0 ||OF|LK/NyE LK;M,
1 1 _
+ D [5Amy(P = P+ S A (P — P )2 ()
Jje&,j#i
£ T Eic (1), (7.18)
Y,NE; M"Y, +YV:M

where £2; = |:AiTXi + Xi A EiTNTY" ]
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From Lemma 7.2, we know that Z; < 0 if and only if there exist real numbers
pi € R such that

LTFT X;Hy; _
Ql—|—|: 101:|[H‘;[;X,0]~|—|: O i|[F,L,O]+Z7TUP]
jes
L [EINTKTEINTKILI[ KiN,E: KM,
+ p; L A
il MIk! MIKILT ||LiK;N,E;LiK;M,
X;B; X;Hy | [ BIX; 0 1
J”"[ 0 0 HH,,T,.X,- 0] t 2 Amy P = P
JjeS,j#i

1
+ EAnij(Ri —P)]1 <0

holds for each i € ..

Now multiply the above equation by p; on both sides and replace pX;, pY; with
X;, Y;. Then using Lemma 7.2 again, it is deduced that the above inequality holds if
and only if there exist real numbers ¢;, A;; € R such that

LT 1| X; Hy; _
‘Qi+6i|:d:|[l’i O]+6i1|: 0 :|[H£X,' 0]+gni‘/Pj
je.

N EIN'K! EINIKILI|[ KiN,E: KM,
MUK MUKTL! ||LiKiN,E; LiK;M,

X:B; X;Hy |[BI'X; 0 Aij o 1 2
! jeS, j#i J

holds for each i, j € ., which is equivalent to (7.16) in view of Schur complement
equivalence.

B Hence:, the LMIs (7.16) guarantee that Z; < 0. Then we have SV(E ®),i, t) =
cT(ME;¢(t) < 0. We choose o = r_nzgﬂ( Amax &i. Obviously, ¢ < 0.
1€

It follows that
LVE@),i, 1) <allt®I < allx@®)].

Using Dynkin Formula [12], we have

E(VG(). i, D)} = V(xo, 1o, 0) < aE{/ x(s)[Pds),
0

which, together with E{V (x(¢), i, 1)} > 0, implies

E{/0 x(®)IPds) < o {E(V (). i.1)) — V(xo. ro. O)}.
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Letting t — oo and noting that (—a) ™'V (xg, 79, 0) < 400, we know the system
(7.10) achieves robustly stochastic stable according to Definition 7.1. This completes
the proof.

7.2.4.2 Robust H,, Disturbance Attenuation

Consider the H,, performance function as

T
Jr = E{ / " ()z(t) — y*w (Hw(D)1dt}, (7.19)
0

for T > 0. The following theorem gives the result.

Theorem 7.2 The Markovian jump system (7.10) with uncertainty domain (7.11)
and dynamic output feedback control law (7.14) is robustly stochastic stable with y -
disturbance H., attenuation if, forany i, j € .7, i # j, there exist positive-definite
matrices X;, Y; € R, K; € R™*" and positive real numbers €;, \;;j such that the
LMIs (7.20) holds

[ @1 @i Wi 0 Iy Iy I3 Iy
% Py 0 Wy 0 MIK' MIKILT 0
*  x —A; 0 0 0 0 0
¥k * —A; O 0 0 0
* * * * —l 0 0 0
* ok k% x  —pil 0 0
* ok * * * * —pil 0
* * * * * * * —,oi_ll
* ok ok % * * * *
* ok k% * * * *
* % % % * * * *

I5; I Iy
0 MJK!D! 0
0 0 0
0 0 0
0 0 0
0 0 0 <0, (7.20)
0 0 0
0 0 0
—p ' 0 0

* —1I 0

* * —yzl_
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for some given scalars p; > 0, where

- - _ A
D1i=A] Xi+ X A +Zﬂinj+ z %Q‘zjln‘i‘eiL,‘TLiv
jes je . j#i

_ A

Pioi=E NTY;, @ppi=M" YA, M+ 7Yt D e
jes JES, j#I

Iy=X;Hy, Dy=E[N] K], I'y=EINIKL] Ii=X;B;,
Isi = X;Hyi, Iy = C/ + El N K[ D], Il = X; W,
V= X=X, Xi—Xo, . Xi— X1, Xi—Xi 41, L X=X,
Uy =1Yi=Y.Yi—=Yo, ... Y=Y, Yi=Yipq, ..., Yi= Y],

A; =diag{hitly, oLy, ..o Aig—yLns Mg+ dn, - Min I}

Proof Consider the equivalent closed-loop Markovian jump linear system (7.15), it
can be easy to obtain the condition (7.16) from (7.20). Hence, the closed-loop system
(7.15) is robustly stochastic stable. Similar as Theorem 7.1, foreachr(t) = i, i € .7,
we define a positive-definite matrix P; € R2mx2n by P; = diag[X;, Y;], and construct
a stochastic Lyapunov functional candidate as V (E (1),i,t) = ET (1) Pif (t). Applying
the Markovian infinitesimal operator, we have

V@i =" (1) [W‘?"P, e ] n(). (7.21)

where (1) = [£7 (1) w! (1)]", & is defined in (7.18).
Then by using Lemma 7.3, it follows that

o LIFITHE X H,i
d"EQ”L[ 'olHXafo +| 7o [ O]
o EI/N/KI ETNIK'LI[ KiN,E; KM,
L MIKT MIK'L! ||LiK;N,E; LiK;M,

1 1
+ D [5Amy(P) = P+ S Amij(Py = P)]
jeZ j#i

[X:B; X;Hy | [ B X; 0 _
+Iol [ O O thl'Xl O + Zynljpf
J€

4

>

s

with p; any real positive number for each i € .. Using Dynkin’s formula again,
wehave E{V (x(T),i, T)} — V(xo, r9,0) = E{fOT LV (x(s), i, s)ds}. Observing the
zero initial condition V (xg, 9, 0) = 0 and considering the performance function, for
any w(t) € L;[0, 0o), we have
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Jr

T
= E{/ [z ()z(t) — y*wT (O)w(t) + LV (x(2), i, 1)]dt} — E{V (x(T), i, T)}
0
T
< E{/ zF ()z(t) — y*wl Ow(@) + LV (x(1), i, 1)]dt}.
0

Taking (7.21) into the above inequality gives

T A
g PW,
JSE/nT(t)*([ i i ati|
! [ 0 WaTiPi _Vzlnw

T
clr +ET 1\;,{ KI'D!T [C; + D:K;N,E;
+ M D! D! D;K;M, )n(l)dt].
0 0

From Lemma 7.2 and Schur complement, we have Jr < 0 if and only if there exist
real numbers €;, A;; € R such that

L] —1 | Xi Hy; T
Qi+€i|:0][LiO]+€i [ 0 i|[HaiXiO]
L [EI'NTK! ETNTKILI[ K;N,E; KM,
+ p; T T T T T
i | MIK] MIKTLT ||LiK:N,E; LiK:M,

X;B; X;Hy |[BTX; 0 ,
+lol[ O Ob][HIhTX 0}—’_)/ ZWa];PIPlWal

A 1
+ D AP+ D (el bt (P = P
jes JES, j#I g
L [Ci + DiKiN,E|[Ci + DiKiN, E; T<o
DKM, DKM,

holds for any given p; and each i, j € .. Applying Schur complement and letting
T — o0, itis verified that (7.20) guarantees J, < 0 forany w(t) € %[0, co), which
in turn guarantees y-disturbance H., attenuation of the closed-loop system (7.15)
from w(t) to z(t).

Remark 7.7 Theorem 7.2 presents a sufficient condition for the solvability of the
robust H, control problem via output feedback controllers based on a high-gain
observer. It can be seen that the condition in (7.20) is not an LMI with respect to
the parameter ¢; since €; appears in (7.20) in a nonlinear fashion. Note that ¢; can
be any scalar in view of Lemma 7.3. Hence, as we have applied in Theorem 7.2, an
easy way to design an output feedback controller is to fix the parameter ¢; to solve a
strict LMI in X;, ¥; and K;, which defines a convex solution set; such an approach
was also adopted in [16, 23].
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Remark 7.8 Although the method proposed in Theorem 7.2 is an extension of
Theorem 7.1, it may cause some conservativeness compared with Theorem 7.1 since
the parameter p; has been already given. In the case when p; is not fixed, it can be
shown that (7.20) is equivalent to a bilinear matrix inequality (BMI). Therefore, if one
can afford more computational efforts, better results will be obtained by solving this
BMI directly, which can be implemented by resorting to some effective algorithms,
such as the Lagrangian dual global optimization algorithm and the branch-and-cut
algorithm proposed in the works by [20, 39].

7.2.5 Numerical Simulation

The following variables have been chosen to describe the wheeled mobile manipu-
lator (see also Fig.7.1): 1;, 7,: the torques of two wheels respectively; 7;: the torques
of the under-actuated joint, that is, t; = 0; 6;, 6,: the rotation angle of the left wheel
and the right wheel of the mobile platform respectively; v: the forward velocity of the
mobile platform; 8: the direction angle of the mobile platform; w: the rotation veloc-
ity of the mobile platform, and w = 6; 6, : the joint angle of the under-actuated link;
mi, I.1, [;: the mass, the inertia moment, and the length for the link 1 respectively;
my, I, [: the mass, the inertia moment, and the length for the link 2 respectively; 7:
the radius of the wheels; 2/: the distance between two wheels; d: the distance between
the manipulator and the driving center of the mobile base; m ,: the mass of the mobile
platform; /,: the inertia moment of the mobile platform; I,,: the inertia moment of
each wheel; m,,: the mass of each wheel; g: gravity acceleration. The mobile manip-
ulator is subject to the following constraint: x cos & — y sin @ = 0. Using Lagrangian
approach, we can obtain the dynamic model with g = [6;, 6, 0,17, then we could

Fig. 7.1 The wheeled
mobile manipulator in the
simulation

Passive wheel

Driving wheel
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obtain the dynamics as follows M(q)g + C(q, ¢)¢ + G(g) = Bt. The details can
be found in [31].

As discussed in Sect.7.2, we set the fully operational configuration represented
by OOO while three possible fault configurations can occur: OOF, OFO, and OFF,
where O represents operational joints(or wheels) and F represents failed joints. For
example, if we find that a fault occurs in 7y, , then the fault configuration to validate
the proposed methodology is the OOF configuration.

We consider a workspace with a positioning domain which ranges from —8°
to 12°, with the velocities set to 1°/s, and use 2 sectors of position in each joint,
denoted as I (—8°~2°) and II (2°~12°) to map the mobile manipulator workspace.
The linearization points with respect to [ and IT are chosen as —3° and 7°, respectively.
Then, according to Sect. 7.2.3, 8 linearization points with 32 modes are found, which
are shown in Table 7.2.

There exist 32 modes for the above fault-tolerant example, which means a32 x 32
dimension transition rate matrix I7 is needed. We may partition /7 into 16 submatrices
of 8 x 8 dimension as the following form

Hooo Iy Iy Iy,
Hy Ioro IHr Iy
Hy Iy Ilpor 1l
Ir Mg I IlorF

= (7.22)

Table 7.2 The mode of operation

Mode Joint status | Mode Joint status | Linearization section

0y 01 01
1 000 17 OOF 1 I I
2 000 18 OOF 1 1T I
3 000 19 OOF 1 I I
4 000 20 OOF 1 I I
5 000 21 OOF 1I I 1
6 000 22 OOF I 1T I
7 000 23 OOF 1I | I
8 000 24 OOF 1I I )i
9 OFO 25 OFF 1 | I
10 OFO 26 OFF 1 I 1
11 OFO 27 OFF 1 | II
12 OFO 28 OFF 1 I )i
13 OFO 29 OFF I 1 1
14 OFO 30 OFF I I 1
15 OFO 31 OFF 11 I )i
16 OFO 32 OFF II 11 1T
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where I1poo, [Horo, [Moor, and I1ppr groups the relationships among the opera-
tion points in the set OO0, OFO, OOF, and OFF, respectively. I'1y, and [T, are related
to the probability that a fault occurs in joint 6; and 6, respectively, while [Ty, g,
represents the rate of fault occurrence in 6, and 6, simultaneously. From Markov
process theory, one can deduce that [Ty, 9, = 0. [T describes the probability that
the fault in certain joint is repaired. In the mobile manipulator system, we often
assume [Tg = 0, which means the defective joint cannot be repaired. From the uncer-
tainty domain assumption (7.13), we suppose that /T = IT + AIT and the nominal
value selected heuristically as Hoooli,)=—3.67, Moo, 7)=0.42, Horoli, )=
—2.79. Moro(i, j)=0.36, Moo r (i, i)=—2.98, Moo r(i, j)=0.36, Mopr (i, i) =
—1.96, HOFF(Z j)=0.28, 1791(1 i)=0. 27 179,(1 7)=0, I'[g1 (i,1)=0.46, 179] @ j=
0, I"[R_I'[g,ﬁ1 @ jH=0,vi,j=1,2,...,8, i # j. Then we set the estimation error
to 10% of the nominal values.

The system parameters canbe setas G =0,B =13,1,, =1.0kgm?, I, =1.0 kgm?,
my=10kg,my=1.1kg,l1=1.0m,l1,=1.0m,,=2.8m, m,=10.0kg, m, =2 kg,
I,=1Nm, I,=1.0 kgm?, r =0.5m. Then from (7.4), we get the MIMO linearized
system matrices A;, B;, W;, (i = 1,2, ..., 32) which are not listed here for economy
of space. We assume the output matrix parameters are mode-independent, and set
C =[1.11,0;0,0], D =10,0;0, 1.157], E = [1, 0], where 0 represents the 3 x 3
zero matrix. Parametric uncertainty F(i,t), i =1,2,...,32 is set as F(i,t) =
diag[0.9sin(it), 0.88 sin f cos(it), 0.2 cos>(2it), 0.3 sin(it), 0.5 cos(2i*t), 0.7 cos®
(it)] and torque disturbances d(¢) are introduced to verify the robustness of the con-
trollers d, () = 0.023sin(4¢), d;(t) = 0.07sin(31)+0.09cos?¢t and d,(t) =
0.015 cos(5¢). The disturbance is turned off after the fault introduction in correspond-
ing joint or wheel. Other matrices E;, L; consisting of parametric uncertainties are
set to be within an appropriate range and are not listed for details here. We choose
e =0.01, by =1.9, b, =2.6, bz = 2.7. The mode-independent output controller

0.3

0.2

015} / i

01} ]

Tracking Error Response(°)
o
&

OF0 2 3 Tore 4 5 6
Time(s)

Fig. 7.2 The tracking error response
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parameters in (7.14) are obtained from (7.8). We further assume that the noise atten-
uation level y = 1.5 and, for simplicity and without generality, we take arbitrarily 4
modes in Table 7.2. Solving the LMIs in (7.20) while settinge; =1, i = 1,...,4,we
obtain the mode-dependent controller gain Ky, ..., K4. For the page limit, we omit
these matrices. Figure7.2 gives the tracking error response of ¢¢ — ¢ and ¢¢ — ¢
using the controller we get from Theorem 7.1 with the mode dependent controller
gain K;,i =1, ..., 4 solved from LMIs (Fig.7.3). The initial condition we used for
simulation is xo=[—0.2,0.3,0.3,—0.2,—0.1,0.2]7, ro=1 (Fig.7.4).

From the simulation results, a fault first occurs in 1; at o ro. Then another fault
occurs in Ty at topp so that the system mode transfers from OFO set to OFF set.

0.1 T T T T T

~0.25 . . . . .
0

Fig. 7.3 The control signals

4.5

41

3.5 B

A fault occurs in T

25| 4

Mode

2| Another fault occurs in T

0 1 Toro 2 3 Torr 4 5 6
Time(s)

Fig. 7.4 The fault sequence
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Fig. 7.5 The tracking error response with traditional controller

The tracking error decays to equilibrium point under the mode-dependent controller,
which shows the fault tolerant characteristic. Meanwhile for comparison, we use a
traditional output feedback controller without considering robustness and fault toler-
ant method as in [19]. It is obvious that the tracking performance is then unbelievable
as Fig.7.5 shows.

7.3 Optimal Control Problem of MJLS

7.3.1 An Description of Optimal Control Problem

Let (2, F, {%:}i>0, P) be a complete probability space, in which {%;},5¢ is a
filtration that satisfies the usual conditions. Then, consider the following MJLS:

x(t) =A@ @)x®) + B @))u(t),
y@) = Cr()x@), (7.23)
x(t9) = xo, r(to) = io,

where x(-) € R” is the continuous state, u(-) € R™ is the control input and y(-) € R*
is the output. A(-), B(-), C(-) are known system matrices with appropriate dimen-
sions. 7 (-) is a right-continuous Markov chain taking values in a finite regime space
s ={1,2,...,N}L

In addition to the regime space, we also introduce an action space </ which
consists of all admissible actions. We can take any action « € 27 (i) C </ and apply
it to the system, where .27 (i) denotes the set of actions that are available in regime
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i €., o =VUcesd(i). Here, we assume that the actions in different regime are
independent. The transition rate between different regimes is determined by the
action.

A stationary policy, denoted as v, can be seen as a mapping from regime space .7
to action space 7. Noting that the policy v(i), v(i) € &7 (i) determines the action in
the regime i,i € .. Let

V = Xierd (i) = {(v(1),v(2),...,v(N)) :v(l) € Z/(1),...,v(N) € &/(N)}

be the set of all admissible policies, where “x” is called a Cartesian product, rep-
resenting the direct product of sets. According to the theory in [11] and the refer-
ences therein, a policy v € ¥ can be written as a vector v : (v(1), v(2), ..., v(N)).
The transition rate matrix corresponding to the policy v € ¥/, is denoted by I1(v) =
[71,-1'(1/(i))]ff’j=1 where 7;; (v(i)) > Ofor j # iandzjey m;ij(v(i)) = Oforalli € .7.
The jumping probability between regime i and j can be described by

Tij(v(@)A+o(d), i#]

1+ m: (V@) A+ o(A), i = j (7.24)

Pirt+ A) = jlirt) =i,v@)} = [

where A > 0, iim0 0(A)/A = 0. In this chapter, we assume that x(¢) and r(¢) can

be perfectly observed at time 7.
Our goal is to find a control law (u(-), v) € % x ¥ such that the following cost
function (or performance index) [8]

J(xo, ro, u(-),v) = E{/ [x" (M (r@)x(1) +u” ()N (r(0)u(0)]dt|xo, ro},

(7.25)
reaches its minimum, where %7 x ¥ denotes the admissible control and policy space,
N (r(t)) and M(r(t)) are positive definite and positive semi-definite matrix for any
r(t) € .. Without loss of generality, we let #p = 0. For notational simplicity, we
denote J (u, v) as the above performance index, v; the corresponding policy v(i) and
M; the corresponding matrix M (r(t) = i) fori € ..

The following definitions and assumptions are needed.

Assumption 7.3 The overall system (7.23) and (7.24) is stochastically stabilizable
with admissible control and policy set (%, ¥). Moreover, for Cl.T C; = M;, the sys-
tem (7.23) and (7.24) is stochastically observable.

Assumption 7.4 The admissible vector-valued policy space is
V={e RV : Vimin < Vi < Vimax, Vi € 5}, (7.26)

where v; min and v; max are given scalars. Noticing that ¥ is compact and convex.

Assumption 7.5 The transition rate m;;(v;) is continuous and smooth enough
W.I.t. v;.
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Definition 7.2 Given a matrix, then, we can construct a column vector by placing the
matrix’s columns under each other successively. The vector is denoted as Vec{W;} €

C™. Furthermore, for all N-sequences of matrices W = (W, W,, ..., Wy) with
W; e C™"i =1,..., N,Vec{W} € CN™" alsorepresents a column vector by plac-
ing Vec{W;},i = 1, ..., N under each other successively. Specifically, Vec{W} can

be written as
Vec{W} = [Vec{ Wi}, Vec{Wa)T, ..., Vee[Wy}T]" .

Remark 7.9 The transition rate defined in (7.24) indicates that the selection of the
regime-dependent policy v € ¥ and the corresponding transition rate 7r;; are not
explicitly dependent on time. Take the manufacturing systems in Sect.7.3.1 for
instance, the maintenance policy or the facility layout (which is the strategy when a
certain condition arises) is determined in advance and carried out at the initial time.

7.3.2 Two-Level Regulating Method

For the JLQ problem with the transition rate characterized by MDPs, a two-level
regulating approach is employed to find a better policy. Specific steps are as follows:
For the lower level, we find an optimal state feedback control law u € % with a fixed
transition rate control policy; For the upper level, we seek for a new transition rate
control policy that has a lower cost than the present one. Iteratively, an optimal or
near-optimal policy can be obtained.

7.3.2.1 The Lower Level—State-Feedback Control Law

In the lower level, the objective is to find a control law u* € %/ to minimize the
following performance index, i.e.

JoW) & T v) < Ju,v), foralue%,ve?.

The JLQ problem with a given policy v € ¥ is to find a state feedback control
law u = u(x, t; v) such that the performance index reaches its minimum. This is a
reduced problem that can be solved by using the stochastic version of maximum
principle(see [40]) or dynamic programming(see [5] and the references therein).
Then, as in [25] or [9], the following Coupled Algebraic Riccati Equations(CARE)
can be obtained.

N
AT P+ PA; — PBiNT Bl P+ My + D mij(v)P; =0, Vies. (127)

i=1
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Note here that the transition rate is policy-dependent.
Under Assumption 7.3, we obtain the following property of the solutions P; for
eachi € .77.

Lemma 7.4 For the above reduced problem under Assumption 7.3, the set of solu-
tions P; of (7.27) for every i € . are unique and positive definite. Furthermore, the
optimal steady state control law is

u*(t) = —N; "Bl Pix(1) (7.28)
and the overall system is stable in the mean square sense that
E{xT(t)x(t)|x0, ro}— 0 as t — oo.

Finally, the performance index under the optimal steady state control can be calcu-
lated as follows:
Jur (v) = xg PigXo. (7.29)

Proof Following similar procedure in the proof in [25], the conclusion can be readily
proved and thus the proof is omitted.

Denote the solution set by P;. The above lemma implies that for any i € ., the
solution P; determines a continuous surjective mapping from the admissible policy
set ¥ to the set &

PV > P,

through the implicit constraint (7.27). Then, the performance index (7.29) is given by
J(v) = xOT P;,(v)xo. (7.30)

Notice that the above mapping corresponds to a new unique and continuous map-
ping from ¥ to the set of the vectorized solution &7, i.e.

Vec{P;}: ¥V — 2,

7.3.2.2 The Upper Level—Near-Optimal Policy

The gradient-based method is a popular optimization algorithm with the perfor-
mance gradient VJ,- being its crux. However, the implicit relationship between v
and P; makes the traditional way of computing the gardient based on the defini-
tion VJ,«(v) = Aligo(]u*(v + Av) — J,+(v)) almost impossible, since the twin evil
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of noise and non-linearity exists [45]. The policy iterative optimization algorithm is
proved to be an effective method to deal with this problem. In [45], an iterative algo-
rithm that based on the performance gradient was proposed to find policies efficiently
for the near-optimal problem with “long-run average” performance index. But for
the problem with general performance index, the performance potential can not well
characterize the properties of the system. In this chapter, we propose a new iterative
algorithm based on the gradient projection method. We will show the effectiveness of
this algorithm in dealing with the near-optimal problem with the performance index
in (7.25).

Given the initial policy vy, our goal is to reduce the value of the performance
index J,«(v) by tuning the policy v € ¥ in some way. In other word, we need to find
a more effective policy than the initial policy vy.

Theorem 7.3 Under Assumption 7.3 and Assumption 7.5, the gradient of each entry
of P;(Vi € ) with respect to 'V exists.

Proof For both side of Eq. (7.27), we take the operator Vec defined in Definition 7.2,
and obtain an equivalent equation

1
(A] ® Iy + 1, ® A[)Vec( P} — S(PBiN;" B @ I,)Vec(P,)

1
—E(In ® P;B;N,' B )Vec{P;} + Vec{M;}
N
+ Z (71 (vi) ® 1,2) Vec{P;} = 0, (7.31)

i=1

where “®” refers to the Kronecker product. An important conclusion of the oper-
ator Vec for deriving the above equation is Vec{LK H} = (HT ® L)Vec{K}) with
L, K, H being arbitrary real matrices.

Denote by F; the leftside of (7.31),andlet F = (F, Ff, ..., F§)T. The following
two statements need to be proved.

(a) F is continuously differentiable with respect to every entry of P; € & and

Vi € Vv, Vi e L.
C T
(b) det (&) # 0, where = represents the Jacobi matrix & = dF /9 [Vec{P}]

and P represents the N-sequence matrices (Py, ..., Py).
The proof of statement (a) is straightforward by using formula 7.31 and Assump-
tion 7.5.
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In order to verify the correctness of statement (b), notice that

1 1
E = a[ diag [(A] — 51E>,-B,-N;13f) L +1,® (A — 51131-31-1\7;1191.T)
i=1,2,...,.N

+ IT(v) ® 1,2 [Vec(P) +V£(M)]/a [VQ(P)]T

= dtag [(Af = PB:N'BI)® I, + I, ® (AT — P;B;N;'B])]
i=1,2,.

+ V)R L, (7.32)

where M = (My, ..., My).
From the above equation, =" is averaged dynamics matrix [33]. Therefore, the
necessary and sufficient condition for

=T ;

llim E{xT(t)x(t)|x0, 70} = 0

in Lemma 7.4 is that all the eigenvalues of matrix Z7 have negative real parts, (See
[32, 33] for details). Then, it gives that det(&) # 0 over the admissible policy set
¥, i.e. and thus (b) is verified.

If the two statements (a) and (b) hold, then based on implicit function theorem
[26], the surjective mapping Vec{P;}(v) determined by F = 0 is continuously dif-
ferentiable on #. That is, the existence and uniqueness of the gradient VVec{ P;} for
every v € ¥ are proved.

Theorem 7.4 Under Assumptions 7.3 and 7.5, the Hessian matrix of each entry of
P; (Vi € %) with respect to ¥ exists.

Proof Theorem 7.3 implies that the surjective mapping Vec{P;}(v) is continuously
differentiable with respect to any v; € ¥, € .. Taking partial derivative with
respect to v; on both sides of the equation F = 0, and then by some equivalent
transformations, we obtain

[ diag [(A] — P.B;N;'B]) ® I, +1, ® (Al — P;iB;N; "Bl |+ 11 (v) ® I,
i N

9P (oI

Ve 28y 4 (21Y) o 1 YNectp) =0, (7.33)
8\// 3

where 22 Bw (%fl,...,"PN)

Denote by Gl the left side of (7.33). Then similar to (a) and (b), the correctness
of the following two statements are to be verified.

(c) G is continuously differentiable with respect to every entry of P;, d P;/dv;
and v;,Vi € ..

(d) det (aG,/a [Vec{ }] ) £0.

ybzhao@zjut.edu.cn



7.3 Optimal Control Problem of MJLS 175

Similar to Theorem 7.3, the proof for statement (c) is also straightforward.
In order to verify the correctness of statement (d), we need to deal with the
following Jacobi matrix.

~— P 1"
3G, /9 |:Vec{a—w}1|

= ['diag [(AT—PB;N'B])® I,+1, ® (A —=P;B:N;' B[ ) |[+1T(») ® I, ]

= diag [(A] — PB.N]'Bl)@ 1, +1,® (Al — PB,N'B[ )|+ 1 () ® 12,

Let 0G,/0 [V/e?{%}]T = &, then, follow similar lines as in the proof of statement
(b), we can show the validity of statement (d).

Similar to Theorem 7.3, the proof is also based on implicit function theo-
rem. Following statement (c) and (d), the implicit function theorem implies that
Vec{d P;/dv;}(v) is continuously differentiable on 7. Then, we can show the exis-
tences and uniqueness of the Hessian V2Vec{P;} for eachv € 7.

Both above theorems are important in the preparation of the algorithm and the
corresponding convergence analysis. Next, the following projection theorem is intro-
duced [17].

Lemma 7.5 [17] (The Projection Theorem for Convex Sets) Let xg € R" and §2 C
R" be a nonempty closed convex set. Then x € 2 is the solution of the following
problem
min{||x — xo||* : x € 2},
if and only if for any y € 2, the inequality
@ —x0) (y =320
holds. Furthermore, it can be verified that the solution x always exists and is unique.

Definition 7.3 [17] Denote by £2 C R"” anonempty closed convex setand letx € £2.
We define a mapping Proj,, : R* — §2 with

[|Projg (x) — x|* = min{||y — x||*: y € 2}.

Then, we call Proj, (x) is the projection of x on £2. Lemma 7.5 implies that Proj, (x)
is well-defined.
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Denote by Proj,, (v) the projection of any policies v € RY on ¥, where ¥ is
defined in (7.26). Noting that the policy v does not necessary belong to #". Then,
decompose the projection Proj., (v) into each coordinate, we can obtain each com-
ponents of vector Proj., (v) by Definition 7.3.

Vi min lf Vi < Vi min
[Proj"j/(v)]i = Vi lf Vimin < Vi < Vimax » (734)
Vimax Lf Vi = Vimax

where [Proj., (v)]; denotes the ith component of Proj., (v).

In the following, we will establish our algorithm. When given an initial state x
and an initial regime iy, we can calculate the gradient of the performance index (7.30)
as follows.

dVec{P;,} r o Vec{P;,} r
) ( ) N
3\/1 BVZ aVN

dVec{P;,} )Ti| ’
(7.35)
The following algorithm is proposed based on the gradient projection method [3].
In the algorithm, the superscript k represents the kth iteration.

Ve () = Iy ® (x¢ ®x0T))[(

Algorithm 7.1  Step 1. Set k = 0 and the initial stepsize s > 0. Let the small
positive constant € > 0 denote a prescribed error margin. Suppose that the initial
policy v(® € ¥ is also given.

Step 2. Given a policy v¥, evaluate the performance of the policy v®,

e First, calculate the transition rate matrix I7(v*) and its derivative with respect
tov : %—vam, 1=1,2,...,N;

e Then, calculate VecP;(v®),i = 1,2, ..., N by (7.27) and calculate BV;;PiO [
[=1,2,...,N by (7.33);

o Finally, substituting the result of "= [, [ = 1,2, .., N in (7.35), which
gives the performance gradient V J,- (v®);

Step 3. After evaluate the policy v(¥), we will find a better policy v+ according
to the following equation,

VED = Proj, [V — sOV I, (0 ®)]
where the updating of the policy is component-wise. That is, we should update

the policy for each regime based on (7.34). Another important thing is the stepsize
5™ Here we give the constraints the chosen stepsize should be met.

o0
lim s® =0, Zs(k) = 400 (7.36)
k=0

k—o00
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Step 4. The stop condition for the iteration: If ||J,-(v&+D) — J,. v®)|| < €, the
algorithm stops; otherwise, set k = k + 1 and go to step 2.

The following theorem gives the convergence results of the proposed algorithm.

Theorem 7.5 For the Algorithm 7.1 with Assumptions 7.3, 7.4 and 7.5, we have the
convergence results,

1. The difference between v¥**+D and v® tends 10 0, i.e. limg_ o |[V*TD —v®]| =0
and the limit point of v(® is also a stationary point;

2. The infinite sequence {J*(v¥)} decreases and converges to a finite value;

3. Furthermore, if J,+(v) is a strongly convex function in ¥V, then the sequence will
converge to an unique optimal policy v*, which will minimize the performance

index J,~(v) in V.

Proof This convergence result is mainly based on Theorems 7.3 and 7.4. According
to the results developed in [3, 4], the policy v*), whose update is based on gradient
projection algorithm with the stepsize in (7.36), converges to the stationary point v*,
and the performance index {J,- (v®)} also converges to a finite value, if the following
two conditions are met,

(1) J,+(v) is continuously differentiable and bounded on ¥,

(ii) the gradient V J,« (v) is Lipschitz continuous on any bounded subset of ¥/, i.e.

IVJ*(V) — VI*0)|| < LIV —=V'|| forsome L > 0, W,V € ¥ (1.37)

Because of the compactness of ¥ and the conclusion that J,« (v) is continuously
differentiable in Theorem 7.3, we can obviously see that the condition (i) is met.
For condition (ii), Theorem 7.4 indicate that the Hessian of P;, Vi € . defined in
any bounded subset of ¥ is bounded in the matrix 2-norm sense. That is, V P;(v) is
Lipschitz continuous on any bounded subset of ¥ [35]. By definition, we have the
following inequality holds for any v/, v’ € ¥,

IVI*() = VIO < lIxol PV P = VR < Lollxol PV = vl

where Lo > 0 is a constant. Set L = Lo||xo||>, we have (7.37) for any bounded x,.
Therefore, Algorithm 7.1 will converge. This completes the proof.

Remark 7.10 The policy-based optimization problem is solved by Algorithm 7.1,
which updates the policy recursively to obtain a better one. In Step 2, when the policy
v ig given, we need to solve the CARE (7.27) to obtain P; (v®), and then, V J,« (V%)
can be obtained by solving the Eq. (7.33). This step seems to be the most complicated
part in the algorithm. It is worth noting that once we get P;,i € ., the Eq.(7.33)
becomes the linear constraints with respect toT/e;{g—v’j}, which can be solved fairly
efficiently. Therefore, once we obtain the solution of the JLQ problem in the lower
level, the computational cost will become relatively small.
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178 7 Applications Based on the Markov Jump Theory

Remark 7.11 In Algorithm 7.1, the diminishing stepsize rather than the other choice
of stepsize including constant stepsize, Armijo rule, limited minimization rule, is
used, mainly for the following three reasons. (1) Diminishing stepsize is an effective
method when the Lipschitz constant L is unknown. We only need to verified the
existences of L to guarantee the convergence. Noting that the computational cost is
very high when computing L through obtaining the explicit expression of Hessian,
hence the diminishing stepsize is much more efficient. (2) For some choice of stepsize,
such as Armijo rule, the “stepsize judge” step is needed in each iteration, which will
lead to large computational cost. This is due to the fact that each judgement is based
on the variation of v, and the repetitive computation for CARE:s is costly. However,
this procedure is avoided for diminishing stepsize, thus the lower cost. (3) the policy
space ¥ is compact, which implies the boundedness of the generated policy sequence
{vK}. Then, the convergence of the algorithm with the diminishing stepsize rule is
enhanced [3]).

7.3.3 Two Special Cases

In the previous subsection, we establish the general policy iterative algorithm based
on the gradient projection method. However, this algorithm is no longer applicable
without the initial state x¢ and initial regime ry. In this part, we investigate two special
cases, where the obtained optimal policy or near-optimal policy is more practical.

7.3.3.1 The Scalar Case

First, we consider the scalar case, where the performance index (7.30) can be rewrit-
ten as J+(v) = xéPiO (v). Suppose m;; > 0, i # j, we hope that the near-optimal
policy or the optimal policy obtained when J,+(v) is strict convex, i.e. “strongly time
consistent” [15]. That is, once a near-optimal is determined in advance, then for any
t € [ty, 00), the policy is still near-optimal during [¢, c0). That is to say, the policy
is steady-state global near-optimal.

Theorem 7.6 For the scalar system (7.23), (7.24) with performance index (7.25),
the near-optimal policy has nothing to do with the initial state xy and the initial
regime iy.

In the following, we give some preparations for the proof. All of the following
definitions and propositions are the general theory of M-matrices [2] and gradient
projection method [3].

Definition 7.4 [21] Consider a real n x n matrix A = (a;;),

o if the off-diagonal entries are non-negative, i.e. a;; > 0 forall i # j, then, we call
A the Metzler matrix.
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o if the off-diagonal entries are non-positive, i.e. a;; < 0 foralli # j, then, we call
A the Z-matrix.

e if all the eigenvalues of A are positive, then, we call A the P-matrix.

e if A is both Z-matrix and P-matrix, then, we call A the M-matrix.

Proposition 7.1 If all the entries of M-matrix A is nonzero, then A is nonsingular
and all the entries of its inverse A~! are positive.

Proposition 7.2 A policy v € ¥ is a stationary point of J,-(v) if and only if v =
Projy[v —tVJ,=(W)] forallt > 0.

Proof of Theorem 7.6

Proof Our goal is to prove that v* is a stationary point of J; ,-(v) = xlzPil (v) in the
policy space ¥ forall x;, x, € R" and i, i, € .% if and only if v* is also a stationary
point of Jy (V) £ x2 P, (v).

In light of (7.32), we can rewrite Eq. (7.33) as follows,

aI1(v)
avl

—— 0P —
g -Vec{a—} =— ( ® I,,z) Vec{P}. (7.38)
v

In the above equation, Z is a Metzler matrix. We have proved in Theorem 7.3 that
all the eigenvalues of matrix & have negative real part. Then, from Definition 7.4,
— & is an M-matrix and nonsingular. Let

®=—5"=1[¢i ¢ - ¢nl.
In the following, k;(i € .’) denotes an N-dimensional column vector where

: 1j=i
the jth entry of k; = [O otherwise *
Consider the ith entry of the vectorVe;{g—S}, i € .. Foranyregime!l € ., v is
the policy that can only apply to the corresponding regime /, then we obtain

oll(v)——
O eclP) = ak” - @ -k, (7.39)

oP;
W _ 1 g
3\11 Vi

where o) = (387T_V/’1P1 + aaLVl’ZPZ + ...+ a(;r—‘ﬁlNPN).
Choose arbitrary two initial regimes, i; and i,. Substitute i into (7.39) with i; and
i respectively, we obtain

ok - kI @ ki, = k! [prp] ki,

1

0P, ) 8P,() _ 9P, 0) [3P,T" | o7
Bvl 3\11 - 3\/[ 31)1 T
(7.40)
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Proposition 7.1 implies that for every [ € ., each entry of matrix ¢, is positive.

Together with (7.39) and (7.40), the following two statements hold.
(e ) Py (v) 3P, (V) >0
BV[ 3\/[ - ’

(f) “® = 0 if and only if “2 =0,
Suppose that v* is a statlonary pomt of Ji .+ (v) = xi Pl1 (v). Then, we derive the
gradient of J; ,» and J, ,« at v*,

Ve (V) = xiV P, (), Vi, (V") = x3VP,(V), (7.41)

where x1, x, € R" are the initial states. From the system dynamics (7.23) and the
control law (7.28), we can conclude that x; and x, are nonzero.

According to statements (e) and (f), we can verify that there exists a positive
constant d; such that the following equality holds.

P, ()

Bvl

LA
aV[

v* v*

By the above equality and formula (7.41), we obtain
VJy (V) = 0xIDV P, (v*) = 0DV J; o (vY), (7.42)

Wheree_(xz/x1)2>0 D = dzag {dl} d, > 0.
1=12,..,

From Proposition 7.2, we see that for allt > 0, each component of v* satisfies the

following equation,
. 0 Jl u* (V)
* = Proj, [v —t—=—~21| ],
Vi ]y [vl v, ]

P

Consider the optimality condition [3], if v* is a stationary point of J; ,«(v) in ¥, then

aJ u* .

e @ 0 i vy <V < Vi, (7.43)
aV,' VE

A1 e

310 ) >0, if v =V mins (7.44)
8v,- -

aJ u* .

'a'—(v) <0, if v = Vi (7.45)

Vi -

9Jp.x (V)
av,

i

For the projection of |:v,* —t ] when ¢ > 0, three cases are considered.

P

*
L. Vimin <V} < Vimax-
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The optimality condition (7.43) indicates that —:—— Z”‘ i (V) = 0, and the statement (e)
-
indicates that M = 0if and only if —=%“——= Mz “*(V) = 0. Then, we can conclude
v¥ v*
that 5 ")
J 2.u*(V
Proj., [vi —t——=| 1=}
] [ i P Vi - ] i
2. V! = Vimin.
aJ 1 u (V)

The optimality condition (7.44) indicates that —y——| > 0. Considering (7.42)

P

and notice t > 0,6 > 0, d; > 0, we obtain

V* _ aJZ,u* (V)

0Jp
: = — tgdil’—(v)
aV,‘

! Bv,»

*
= V; = Vimin

v V¥

From the definition of the projection on ¥ in (7.34), we can conclude that

. 92,4+ (v)
Proj, [v — =2 ] = Vi = vi.
8v,- VE
3. V' = Vimax.
Take a similar line as the above case, since w <0,t>0,0>0,d; >0.
V*
we have
82,4 (v) J1,u+(v)
v;.k—l‘L =v?‘—t€diL ZV;F:Vimax»
BV,' - Vi P

Then, by (7.34), we also can conclude that

aJZ,u* (V)
8\/,'

Proj, [vi —t 1= Vimax = V}.

P

The above conclusions indicate that for any # > 0, we have
V¥ = Projy, [v* — tVJy - (v¥)] (7.46)

In light of Proposition 7.2, (7.46) is equivalent to the condition that v* € ¥ is a
stationary point of J ,+(v). Notice that xy, x5, i1, i are all chosen arbitrarily, we
then complete the proof of Theorem 7.6.

By the conclusion in Theorem 7.6, Algorithm 7.1 can be simplified by setting the
initial state and initial regime as xo = 1 and iy = 1 to obtain a near-optimal policy,
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Algorithm 7.2 Step 1. Set k = 0 and the initial stepsize s > 0. Let € > 0
be the prescribed error margin. Supposed that the initial policy v(¥ € ¥ is also
given.

Step 2. Given a policy v¥, evaluate the performance of this policy,

e First, calculate the transition rate matrix I7(v*) and its derivative with respect to
. _ .
vy 8—w|v<k), [ = 1,2,...,N,
e Then, calculate P;(v*%), i =1,2,..., N by (7.27);
e Finally, calculate %ﬂ o , I =1,2,..., N by (7.33)

Vi

Step 3. After evaluating the policy v®), we will find a better policy v+ according
to the following equation,

v = Proj,, [y — s©@v P ®)].

where the updating of the policy is component-wise. That is, we should update the
policy for each regime based on (7.34). Besides, we choose the stepsize s > 0
which meet the following constraints

o

li k) _ k) _ . .

lim s 0, s 400 (7.47)
k=0

Step 4. The stop condition for the iteration:

If || P, (v*+D) — P (v®)|| < €, the algorithm stops; otherwise, set k = k + 1 and

go to step 2.

Remark 7.12 Notice that we need the assumption 77;; > 0, i # j such that Propo-
sition 7.1 can be used in the proof of Theorem 7.6. Here, It is worth pointing out
that this constraint can be released. For instance, from the M-matrix theory [2], if an
M -matrix with some zero entries is irreducible, then all the entries of its inverse are
positive.

Remark 7.13 1In the scalar case, a near-optimal policy without knowing the initial
state and regime can be found if the system parameters remain unchanged. The
advantage mainly lie in the fact that even the system is in operation, one can still
seek for a near-optimal policy by Algorithm 7.1, and then apply the policy to the
system at any time. This can be seen as an “on-line decision” rather than the “off-
line decision” as interpreted in Remark 7.9. However, for the non-scalar case, this
property may not hold any more.

7.3.3.2 The Case with Unknown Initial State

The conclusion in Theorem 7.6 is not applicable to multiple dimensional systems.
In this part we consider the case where the initial state x is unknown. By assuming
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that x is a random variable with known statistical properties, we can decouple x
from the control law. This method has been used to deal with other control problem,
see, [24, 28, 36].

Assumption 7.6 The initial state x; is a zero-mean random variable with covariance
E{xoxOT} =021,

Under the above assumption, J,:(v) = xOT P;,xo becomes a random variable. So

we can use the expectation fu*(v) =FE {xOT P;,xo} to characterize the performance.
Then, we have

Jurv) = E{xl Piyxo) = tr[ Py E{xox{ )] = tr[Piyo?1,] = o%tr[P,,]  (7.48)
and the corresponding gradient is

8P”“),tr(a o), ...,tr(%)]r. (7.49)
8\/1

7 2 Plo
Vi) =o[tr( oy v

In the following, we establish an algorithm to seek for a near-optimal policy for
this case.

Algorithm 7.3 Step 1. Set k = 0 and the initial stepsize s© > 0. Let the small
positive constant € > 0 denote the prescribed error margin. Suppose that the
initial policy v(? € ¥ is also given.

Step 2. Given a policy v¥, evaluate the performance of this policy,

e First, calculate the transition rate matrix I7(v®) and its derivative with respect to
. _
vy EIVW’ [ = 1,2,...,N
e Then, calculate VecP,(v¥),i = 1,2, ..., N by (7.27) and calculate Wgc;P"‘) [y
[=1,2,..., N by (7.33); A
e Filially, calculate the performance gradient V.J,- (v®)) by (7.49);

Step 3. After evaluate the policy v¥', we will find a better policy v**! according
to the following equation,

v&D = Proj,, [v(k) — s(k)VJAu*(v(k))] ,

where the updating of the policy is component-wise. That is, we should update
the policy for each regime based on (7.34). Besides, we choose the stepsize s*
which meet the following constraints:

o0
lim s® =0, > s® = +o0. (7.50)
k=0

k—o00

Step 4. The stop condition for thr iteration:
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If [| - V&) — J,- (v®))|| < €, the algorithm stops; otherwise, setk = k + 1 and
go to step 2.

The convergence analysis is similar as Theorem 7.5, thus is omitted here.

Remark 7.14 With Assumption 7.6, the modified performance index is a scalar rather
than the random variable, which is desirable. Noting that this assumption is not
general, so examining its rationality may be needed for any practical problem.

7.3.4 Numerical Simulation

In this section, we demonstrate the developed results by two examples. In the first
example, a near-optimal policy found by Algorithm 7.1 can effectively improve the
performance. The second example considers the scalar case where the near-optimal
policy is independent on the initial state and the initial regime.

Example 7.1 Consider a two-dimension MJLS with two regimes. Let

317 21
A‘__10_ Az_[lé}
0.6 1
Bi=lo2) By = [—0.1]
[10] 10
M‘:_01_ MZZ[OJ
N, =14 N, =2.1
[—2e™"1 2¢™"
ow=|" 71, _ew}

In this example, some prescribed parameters are given as € = 1 x 1073, v© =
[0.30]7, s® = 0.05 x k~!/3 for all k. Denote the admissible policy space by

Y ={veRN:-2<vy <2 i=1,2}. (7.51)

Assume the initial state and initial regime to be xo = [—1, 0.5]7, ry = 1. Then, apply-
ing Algorithm 7.1, a near-optimal policy v* = [—0.4917, 2] can be obtained within
50 iterations. The performance curve during the iteration procedure is illustrated in
Fig.7.6. Finially, the performance is J* = 77.5941 which is about 26% better than
the original one.
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Fig. 7.6 Performance 105
improvement (Non-Scalar
Case)

Performance

75
0

10 20 30 40 50
Iteration Steps

Example 7.2 Consider a two-regime scalar MJLS where

A =13,A,=1,B,=1,B,=1.2,

My =11,M, =2, Ny =12, N, =0.8.

and 5 5
_ —0.4vie™ 0.4vie”

v = |: e —3e% :|

In this example, parameters are given as € = 1 x 107, v(® =[0.7 0.2]7, s® =
0.6 x k~/* for all k. Denote the admissible policy space by

Y =(veRN:—-1<v, <1, i=1,2}. (7.52)

Assume the initial state and initial regime to be xop = 1,79 = 1, then a near-
optimal policy v* = [1, 0] is obtained. The performance converges to J* = 3.1362.
Figure7.7a shows the performance curve during the iteration procedure. Next,
the initial state and initial regime are changed to xo = 2, ro = 2, then the near-
optimal policy remains v* = [1, 0] and the corresponding performance converges
to J* = 9.0201. This procedure is shown in Fig.7.7b.

Due to the simplicity of the example we can describe the performance index on
the policy space completely. The two cases are shown in Figs.7.8a, b, respectively.
Although the performance is changed with the initial state and initial regime, the
near-optimal policy remains unchanged.
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Fig. 7.7 Performance 3.35
improvement for Scalar Case
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7.4 Summary

In the first part of this chapter, a Markovian fault-tolerant model is developed for a
mobile manipulator with two independent wheels and multiple joints. The uncertainty
of the transition rate matrix is considered in an element-wise way. We have presented
sufficient conditions on the existence of mode-dependent dynamic output feedback
control based on a high-gain observer.

The second part deals with the JLQ problem of a class of MJLS whose regime
transition rates are determined by the initial policy. Based on the two-level regulating
method and the gradient projection method, an algorithm is proposed to seek a near-
optimal policy, and the convergence result of the algorithm is also developed. If
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Fig. 7.8 Performance over
the policy space for Scalar

Case
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(b) Initial condition:xy = 2,ry =2

the property of concavity is unknown, some special method, including simulated
annealing [42], quantum annealing, Tabu search, can be employed to find a global
optimum policy. These will be our future works.
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A
Admissible control set I/, 122
Asymptotic stability
in mean-square, 8
with probability 1, 8
Asynchronous switching, 47
system, 47
Average dwell time, 51
Averaged dynamics matrix, 174

B
BMI, 165
Brownian motion, 45

C
CARE, 171
Cartesian product, 170
CAS, 134
Centripetal and Coriolis torques, 152
Characteristic function, 6
Class

CK function, 116

K function, 116

Koo function, 9

KL function, 9

VK function, 116
Comparison principle, 115
Complete probability space, 6
Control action selector, see CAS
Cost function, 170
Coupled algebraic riccati equations, see

CARE

Coupled Riccati equations, 128

D

Data packet disorder, 138

Detection delay, 17, 46

Diagonal block matrix, 31

Diminishing stepsize, 178

Dwell time, 7

Dynamic output feedback controller, 18
Dynkin’s formula, 26, 34, 101, 163

E

Exponentially stable in mean-square, 9
Exponential stability in p-th moment, 9
Extended asynchronous switching, 49

F
False alarm, 17, 46
rate, 18
Fatou’s lemma, 76, 101
Fault-tolerant manipulator control, 158
Free weighting matrix, 24

G
GASIiP, 9

H

Hamilton-Jacobi-Bellman equation, 123
HDS, 1

High-gain observer, 155

H control, 19

Homogeneous ergodic Markov chains, 139
Hybrid Dynamic Systems, see HDS
Hybrid stochastic delay system, 74
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I

Inertia matrix, 152

Infinitesimal generator, see Infinitesimal op-
erator, 20

Infinitesimal operator, 7, 10

Initial distribution, 138

ISSiM, 9

J

Jensen’s inequality, 54, 116

JLQ, 151

JLQG, 151

JLS, 150

Jump linear
quadratic gaussian, see JLQG
quadratic, see JLQ
system, see JLS

K
Kronecker product, 173

L

Lasalle stability theorem, 100
Limit probability distribution, 139
Linear growth condition, 46, 99
Lipschitz condition, 46

LKF, 23

Lyapunov function, 104

M
Markov chain, 6
Markov decision process, see MDP
Markovian jump
linear system, see MJLS
systems, see MJS
Markovian jump linear stochastic systems,
118
Matrix-valued function, 99
Maximum
forward channel delay, 134
number of consecutive data packet
dropout, 134
MDP, 151
Metzler matrix, 178
Mismatched time interval, 72
MILS, 149
MIJS, 1,6
M-matrix, 179
Moment generating function, 63

Index

N

NCS, 5, 131

Near-optimal policy, 171

Networked control systems, see NCS
Network induced delay, 133
Newton-Leibniz formula, 24
Nominal system parameter, 16
Nonholonomic constraint, 152
Nonlinear jump system, 98

(0]
Optimal state feedback control law, 171
Output feedback controller, 155

P
Packet-based control, 133
PCiP-y, 120
PCpM, 120
Performance gradient, 176
P-matrix, 179
Practically controllable in probability y, see
PCiP-y
Practically controllable in the pth mean, see
PCpM
Practically stable, 116
in probability, see PSiP
in the pth mean, see PSpM
Practical stability, 116
Projection theorem, 175
PSiP, 116
PSpM, 116
Pth moment ISS, 9

R

Razumikhin-type stability criterion, 58
Razumikhin-type theorem, 62

Robust stability, 15

Robust stabilization, 19

Robust stochastic stability, 159

Round trip delay, 138

S

SAS, 100

Schur complement, 20

SISS, 9

SS, 159

Stability with probability 1, 8

State transition matrix , 6

Stationary policy, 170

Stochastically asymptotically stable, see
SAS
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Stochastically stable, see SS
Stochastic input-to-state stability, see SISS
Stochastic nonlinear system, 114
Stochastic stability, 8
Stopping time, 101
Strong solution, 101
Switch
frequency, 7
law, 7
time instant, 7
Switched stochastic nonlinear delay system,
83
Synchronous controller, 59

T

Tchebycheff inequality, 117
Time-stamped, 134
Time-synchronized, 134

U
Uncertainty domain, 158
Uniform boundness
in probablity p, 8
with probablity 1, 8
Uniformly practically stable, 118
in probability, see UPSiP
in the pth mean, see UPSpM
UPSIP, 116
UPSpM, 116

v
Vector-valued policy space, 170

W
Wheeled mobile manipulator, 149

V4
Z-matrix, 179
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