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Abstract— In this paper, the stability for a class of nonlinear
networked control systems with a model predictive controller
(MPC) is investigated. Both the sensor-to-controller channel and
the controller-to-actuator channel suffer from random packet
losses. By constructing a novel cost function, and studying its
deviation from the original MPC cost function, we establish the
stochastic stability for the closed-loop system. To guarantee the
stability, the relationship between the prediction horizon and
the packet loss probabilities of two channels is also discussed.
Finally, the effectiveness of our results is demonstrated by a
numerical example.

I. INTRODUCTION

Networked control system (NCS) is a class of control
system where the controller communicates with sensors and
actuators through digital network [1], [2], [3]. NCS has
recently attracted the attention of a lot of researchers due
to its merits such as increased flexibility, reduced wiring and
lower maintenance costs, etc. However, since the wireless
communication medium is shared and inherently unreliable,
numerous challenges are also brought to the analysis and
design of control system. Packet loss is a typical detrimental
phenomenon that may result from the channel fading and
packet collision, and will deteriorate the control performance
or even cause instability [4].

Various methods have been proposed to deal with packet
loss, among which packet-based predictive control method
is promising since it can actively compensate the packet
losses and then obtain better control performance, see, e.g.
[5], [6], [7], [8]. Specifically, the remote controller calculates
a sequence of predicted control signals, lumps them into one
packet and sends the packet to the actuator. The actuator will
then choose a proper input according to whether the packet
is dropped or not [5].

A key problem that how to calculate the predicted con-
trol signal arises. Model predictive control (MPC) is one
of popular prediction techniques has been widely adopted
in chemical process and mechanical systems, due to its
ability on handling constraints and optimizing closed-loop
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performance systematically [9], [10], [11]. Through solving
an optimization problem at each time step, a sequence
of control signals that results in improved control perfor-
mance can be obtained. Inspired by these facts, a packet-
based MPC framework is proposed to deal with NCS with
communication constraints. In [12], the authors study a
predictive control formulation for discrete-time nonlinear
systems with random packet losses. This work is generalized
to the nonlinear systems with bounded disturbances case,
where the packet losses is modeled as Markov chain in [13]
and the number of consecutive packet losses is assumed
bounded in [14]. Lješnjanin et al. [15] considers a situation
where only one plant input node can access the network
at each time instant, and proposes a MPC-based scheduling
strategy to mitigate this limitation and proves the stability.
[16] studies the random channel access mechanism for the
sensors of multiple subsystems communicating competitively
over shared channel with remote controller, and verifies that
the stability of each subsystem is achievable. All of these
works are in the context of one-channel packet losses. The
NCS with two-channel packet losses is more general, and the
stability analysis for such system is much more challenging.
Since the exact state of the plant is not available to the model
predictive controller at each time instant, the analysis method
proposed in [13] can not be directly applied.

With the above inspiration, we perform the stability anal-
ysis for discrete-time nonlinear system with packet-based
MPC in the presence of two-channel random packet losses.
The main contributions of this paper are summarized as
follows.

1) The stochastic Lyapunov function constructed in our
work depends on the exact state and the control sequence cal-
culated by the estimated state, which is a critical difference
from [13], where the optimal MPC cost function serves as the
Lyapunov function. Based on the decreasing property of the
constructed Lyapunov function at the successful transmission
instants of actuator, the conditions for stochastic stability are
then developed.

2) To guarantee the stochastic stability, the relation of the
prediction horizon and the packet loss probabilities of sensor-
to-controller (S-C) channel and controller-to-actuator (C-A)
channel is investigated. The relation proposed in [13] and
[16] can be viewed as a special case of ours.

3) In a similar work [17], the authors proved that the
closed-loop system is input-to-state practical stability, and
the ultimate bound will not converge to zero even for the
disturbance-free system. In contrast, the stochastic stability
condition is established in this paper and the ultimate bound
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Fig. 1. The architecture of NCS

depends only on the boundary of the disturbance.
The rest of the paper is organized as follows. The structure

of the NCS and some preliminaries are introduced in Section
II. In Section III, we present some necessary notions and
assumptions, and also give some useful preliminary results.
In Section IV, the stochastic stability of the closed-loop
system is established. A numerical example is shown in
Section V to illustrate the effectiveness of our results. Finally,
Section VI concludes the paper.

Notations. Throughout this paper, Rn represents the n-
dimensional Euclidean space, N0 , {0, 1, 2, . . . }. 0n and
In stand for the n× n-dimensional zero matrix and identity
matrix, respectively. For a vector x, xT represents the trans-
pose of x and ‖x‖ means the Euclidean norm of x. Sequence
{y(k)}k∈N0 and sequence {w}l2l1 represent {y(0), y(1), . . . }
and {w(l1), w(l1+1), . . . w(l2)}, respectively. We use Pr{E}
to denote the probability of an event E , and Pr{E1

∣∣E2} to
denote the conditional probability of E1 when given E2. E{v}
denotes the expectation of random variable v, and E{v

∣∣E}
is the conditional expectation of v when given E .

II. PROBLEM FORMULATION

The plant is described by the following discrete-time
nonlinear system

x(k + 1) = f(x(k), u(k), w(k)), k ∈ N0 (1)

where f(0, 0, 0) = 0. x(k) ∈ Rn is the state, u(k) ∈
U ⊂ Rp is control input and compact set U is the control
constraint set. The disturbance {w(k)}k∈N0 is an i.i.d random
variable sequence with arbitrary distributions and satisfies
E{‖w(k)‖s} < ∞. The initial state x(tini) = x0 is also
arbitrarily distributed and satisfies E{‖x0‖s} <∞.

It is convenient to introduce the following iterated map-
pings:

f i(x(k), {w}i−1
0 ) , f(f i−1(x(k), {w}i−2

0 ), ui−1, w(i− 1))

f̄ i(x(k)) , f(f̄ i−1(x(k)), ui−1, 0)

for i ∈ N0, and where f0((x(k), {w}−1
0 ) = f̄0((x(k)) =

x(k), {w}−1
0 = {}.

We first give an outline of the configuration of NCS. The
configuration of NCS illustrated in Fig.1 is very similar

to that in [17], which consists of nonlinear plant, sensor,
smart controller, smart actuator and communication network.
Supposed that the state and control information is transmitted
through data network, where the size of the data packet
frame can be very large. Therefore, the predicted control
sequence calculated by the controller can be encapsulated
into one packet and then send it to the actuator. For the S-C
channel, both TCP-like protocol and UDP-like protocol can
be adopted. In contrast, the TCP-like protocol is adopted
for the C-A channel. Unlike the UDP-like protocol, an ac-
knowledgment packet will be sent to the controller once the
control sequence is received by the smart actuator. Thanks
to the acknowledgment packet, the actual inputs of the plant
are kept available to the smart controller. It is assumed that
the acknowledgment packet is transmitted without any packet
dropouts and time delays. The smart controller contains three
parts: state estimator, MPC and buffer 1. Buffer 1 stores the
control sequence and provides the actual control input for the
estimator based on the acknowledgement signal. The state
estimator gives an estimation of the actual state based on
the system model (1) and actual input provided by buffer 1
especially when the packet loss of S-C channel occurs. MPC
calculates the control sequence based on the estimated state
by solving an constrained optimization problem. The smart
actuator is composed of an actuator and buffer 2 which is
also used to store the received control sequence and provides
the control signal to actuator. The detailed introduction for
each component can be seen in the following subsections.

A. Packet Loss Model

Due to the random access mechanism and the transmission
errors, the packet losses are inevitable. We model the com-
munication channel as erasure channels, i.e., the models of
channel 1 and channel 2 depicted in Fig.1 are characterized
by following two discrete Bernoulli processes {ds(k)}k∈N0

and {da(k)}k∈N0 , respectively.

ds(k) =

{
0 if the controller receives the state packet
1 if the packet dropout of channel 1 occurs

da(k) =

{
0 if the actuator receives the control packet
1 if the packet dropout of channel 2 occurs

Each variable ds(k) or da(k) is i.i.d with packet loss prob-
abilities

Pr{ds(k) = 1} = ps, Pr{ds(k) = 0} = 1− ps,
Pr{da(k) = 1} = pa, Pr{da(k) = 0} = 1− pa.

Fig. 2 provides an illustration to describe the two-channel
packet losses. Denote tk as the (k + 1)-th time instant that
actuator receives the control sequence, and denote t−k as the
time when the state packet is the last time received by the
controller before or at tk. t+k represents the time when the
state packet is first received by the controller after tk (i.e.
t+k ≥ tk + 1). The sensor sends packet to remote controller
at each time step. However, the controller does not calculate
and send the control sequence during {tk + 1, . . . , t+k − 1}
with the reason shown in Remark 3.
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Here, we suppose that the initial time tini = 0 is the
first time that the controller receives the state information.
One interpretation can be that the controller knows the initial
state. After that, the controller must calculate the control
sequence and send it to the actuator at each time step until
the actuator successfully receives the control packet at time
t0. So we have the following probability

Pr{t0 − tini = d} = pda(1− pa) (2)

It should be further emphasized that the actual control inputs
of the plant are 0 during time interval [tini, t0 − 1].

Remark 1: In [17], the numbers of consecutive packet
losses of S-C channel and C-A channel are assumed to
be bounded. In contrast, the two-channel packet losses are
characterized in this paper by two Bernoulli processes, which
is especially fit for modeling the random access communi-
cation strategies in scheduling issues, see, e.g. [16][18], and
consequently, the maximum number of consecutive dropouts
of both channel can be unbounded.

B. Buffering

Two buffers are deployed at remote controller side and ac-
tuator side, respectively. Both two buffers store the received
control sequence. Since the TCP-like protocol is adopted
for the C-A communication network, the acknowledgement
signal sent to controller informs whether the actuator has
received the packet or not. Thanks to this acknowledgement
signal, the contents of both buffers can always keep con-
sistent, i.e. if the packet loss occurs, the contents of both
buffers shift; otherwise, the contents are overwritten by new
received packet. More formally,

b(k) = da(k)Sb(k − 1) + (1− da(k))u(k)

u(k) = eT1 b(k)
(3)

where b(k) is the contents of both buffers with b(0) = 0
and b(t−0 ) = 0, u(k) is the control sequence and u(k) is the
actual control input. S and e1 are defined via:

S ,


0p Ip 0p . . . 0p
...

. . . . . . . . .
...

0p . . . 0p Ip 0p
0p . . . . . . 0p Ip
0p . . . . . . . . . 0p

 , e1 ,


Ip
0p
...

0p



C. Smart Controller

As previously mentioned, smart controller contains three
parts. For the estimator, if the state packet is received
successfully, then the estimated state is the actual state;
otherwise, the estimated state can be calculated by the last
time estimation and the actual input. That is,

x̂(k + 1) =

{
x(k + 1) if ds(k) = 0

f(x̂(k), u(k), 0) if ds(k) = 1
(4)

where u(k) is defined in (3).
For the MPC part, the constrained optimization problem

is solved and control sequence is generated according to
the estimated state. Specifically, the optimization problem
is formulated as:
Problem 1:

minVN (x̂(k),u(k))

subject to

x̂i+1(k) = f(x̂i(k), ui(k), 0)

x̂0(k) = x̂(k)

ui(k) ∈ U, ∀i = 0, . . . , N − 1

where x̂(k) is the estimated state, and VN (x̂(k),u(k)) =∑N−1
i=0 l(x̂i(k), ui(k)) + Vf (x̂N (k)) is the MPC cost func-

tion. l(.) and Vf (.) are the stage cost and the terminal cost,
respectively. Notice that the estimated state at time tk is of
great importance because the obtained control sequence is
received by the actuator, so we denote it as x̂(tk|t−k ), which
can be calculated by x̂(tk|t−k ) = f̄qk(x(t−k )).

Let u∗(tk) = arg minVN (x̂(tk|t−k ),u(tk)) represent the
optimal control sequence of the above optimization prob-
lem at time tk, and is denoted by {u∗0(tk), . . . , u∗N−1(tk)}.
Based on this optimal control sequence, the corresponding
state sequence is {x̂(tk|t−k ), x̂∗1(tk|t−k ), . . . , x̂∗N (tk|t−k )}. The
optimal cost-to-go is denoted by V ∗N (x̂(tk|t−k )). The obtained
optimal control sequence is merged into one packet and then
transmitted to the actuator.

Remark 2: In contrast to conventional MPC algorithm, the
initial value here is the estimated state rather than the exact
state [10], [13], [16]. If tk − t−k = 0, that is, the control
packet is not dropped at time tk, The above MPC algorithm
is then reduced to the conventional one.

Remark 3: Problem 1 will not be solved for all time
instants. This MPC algorithm is carried out if further infor-
mation is provided. That is to say, the MPC does not need
to take any action during the time interval (tk, t

+
k ) since no

new state information is received by the controller and the
latest control sequence has been received by the actuator.
By this way, the computation load of the controller and the
communication load of the C-A channel can be reduced. For
a more detailed explanation of this MPC algorithm we refer
to [17].

III. SOME PRELIMINARIES

In this section, we give some necessary assumptions and
lemmas, which are crucial to the following procedures.
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Assumption 1: [13] The plant model and the cost func-
tions are all uniformly continuous, i.e., there exist constants
λx, λw, λl, λf such that for all (x, y, u, w) ∈ Rn×Rn×U×
Rm,

‖f(x, u, w)− f(y, u, 0)‖s ≤ λx‖x− y‖s + λw‖w‖s (5)
|l(x, u)− l(y, u)| ≤ λl‖x− y‖s (6)
|Vf (x)− Vf (y)| ≤ λf‖x− y‖s (7)

Assumption 2: [13] The stage cost l(.) and terminal cost
Vf (.) satisfy, for all (x, u) ∈ Rn × U,

l(x, u) ≥ αl‖x‖s (8)
Vf (x) ≥ αf‖x‖s (9)

where αl and αf are two positive constants.
Assumption 3: [13] There exists a constrained control law

κ : Rn → U such that

Vf (f(x, κ(x), 0)) + l(x, κ(x)) ≤ Vf (x) (10)

for all x ∈ Rn.
According to Assumption 3, the following result can be

easily obtained.
Lemma 1: [12] If Assumption 3 holds, then

l(x̂(tk|t−k ), u∗0(tk)) ≤ V ∗N (x̂(tk|t−k )) ≤ Vf (x̂(tk|t−k )) (11)

holds for all x̂(tk|t−k ) ∈ Rn.
Assumption 4: For the open-loop system, there exist con-

stant γ which satisfies paγ < 1 and psγ < 1, and η such
that

Vf (f(x, 0, w)) ≤ γVf (x) + η‖w‖s (12)

for all x ∈ Rn and w ∈ Rm.
Similar to Lemma 5 in [13], the above assumption

is satisfied with γ = λfλx/αf and η = λfλx if
max{ps, pa}λfλx/αf < 1. Besides, Assumption 4 implies
that Vf (f(x, 0, 0)) ≤ γVf (x) holds for the nominal open-
loop system.

The following conditional probabilities are essential in
deriving the final results.

Lemma 2: For simplicity, we write Ek1 , {tk− t−k = qk},
Ek2 , {tk+1− tk = ∆k} and Ek+1

1 , {tk+1− t−k+1 = qk+1},
where qk ≥ 0, ∆k > qk+1 ≥ 0, then we have

Pr{Ek2 , Ek+1
1 |Ek1 } =

(1− ps)(1− pa)

pa − ps

[
(1− ps)pqk+1

s p∆k
a

− (1− pa)pqk+1
a p∆k

s

]
(13)

Pr{Ek2 |Ek1 } =
(1− ps)(1− pa)(p∆k

a − p∆k
s )

pa − ps
(14)

for pa 6= ps,

Pr{Ek2 , Ek+1
1 |Ek1 } = (1− ps)2p∆k+qk+1−1

s

[
ps

+ (∆k − qk+1)(1− ps)
]

(15)

Pr{Ek2 |Ek1 } = (1− ps)2∆kp
∆k−1
s (16)

for pa = ps, and

Pr{Ek+1
1 |Ek1 } = (pspa)qk+1 − (pspa)qk+1+1. (17)

Proof: For Pr{Ek2 , Ek+1
1 |Ek1 }, one can list all possible

cases and sum the probability of each case. For simplicity,
denoting qk+1 and ∆k by q and ∆, respectively, we have

Pr{Ek2 , Ek+1
1 |Ek1 }

=(1− ps)2pqsp
∆−1
a (1− pa) + (1− ps)2pq+1

s p∆−2
a (1− pa)

+ · · ·+ (1− ps)2p∆−2
s pq+1

a (1− pa)

+ (1− ps)p∆−1
s pqa(1− pa)

If pa = ps, rearranging the above equation yields (15). If
pa 6= ps, by the sum of geometrical sequence, we get (13).

Pr{Ek2 |Ek1 } and Pr{Ek+1
1 |Ek1 } are the marginal probability

distributions of Pr{Ek2 , Ek+1
1 |Ek1 }, and can be easily calcu-

lated.
When qk+1 = 0 and ps = 0 (or pa = 0), some undefined

terms appear. In our problem setups, these undefined terms
(e.g. pqk+1

a , pqk+1
s , (pspa)qk+1 ) can be simply set to 1. It

should be indicated that the right-hand sides of the above
equations do not contain qk. So event Ek+1

1 and event Ek2
are both independent of event Ek1 .

Remark 4: The limit of the result for pa 6= ps as pa
approaches ps equals to the corresponding result for pa 6= ps.
For example, taking limit for (13) and using L’Hospitol
principle gives Equation (15). Equation (16) can be obtained
by the same way. Therefore, we use only (13) and (15) in
the following procedures for convenient.

It is worth pointing out that both the sequence {qk}k∈N0

and the sequence {∆k}k∈N0
are i.i.d., respectively. Unfortu-

nately, the state sequences {x(t−k )}k∈N0
and {x̂(tk|t−k )}k∈N0

are in general not Markovian. To handle this problem, an
extended state ξ(tk) = [x(t−k )T ,b(t−k )T ]T is constructed,
where b(t−k ) defined in (3) is the content of buffer 1 at
time t−k . It can be verified that the sequence {ξ(tk)}k∈N0

is Markovian, i.e. ξ(tk+1) depends solely on ξ(tk) and is
independently from the history.

IV. STABILITY ANALYSIS

For the closed-loop system, we establish the stability by
the following constructed cost function:

JN (x(tk)) =

N−1∑
i=0

l(f̄ i(x(tk)), u∗i (tk)) + Vf (f̄N (x(tk)))

Noting that V ∗N (x̂(tk|t−k )) is the optimal cost of the MPC
problem which based on the estimated state x̂(tk|t−k ), while
JN (x(tk)) is dependent on the actual state x(tk) and the
optimal control sequence u∗(tk) of Problem 1.

The following technical lemma is often used in the proof
below.

Lemma 3: If Assumption 1 holds, then we have

E
{
‖x̂i(tk+1|t−k+1)− x̂∗i+∆k

(tk|t−k )‖s∣∣ξ(t0), Ek1 , Ek2 , Ek+1
1

}
≤βk,iE‖w‖s , λw

λ
i+qk+1
x − λi+∆k+qk

x

1− λx
E‖w‖s

for all i ∈ {0, 1, . . . , N −∆k}, with ∆k ≤ N .
Due to the limited space, the proof is omitted here.
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We start the proof procedure with k = 0. Denotes the op-
timal control sequence at time t0 by {u∗0(t0), . . . , u∗N−1(t0)}
and the corresponding state sequence based on estimated
state is {x̂(t0|t−0 ), x̂∗1(t0|t−0 ), . . . , x̂∗N (t0|t−0 )}.

Lemma 4: Suppose that Assumptions 1 and 3 hold. If
∆0 < N , then

E
{
V ∗N (x̂(t1|t−1 ))− V ∗N (x̂(t0|t−0 ))

∣∣ξ(t0), E0
1 , E0

2 , E1
1

}
≤Ψ0E{‖w‖s} −

∆0−1∑
i=0

l(x̂∗i (t0|t−0 ), u∗i (t0))

where Ψ0 = λfβ0,N−∆0
+ λl

∑N−∆0−1
i=0 β0,i.

Proof: For the proof, we follow similar line presented
in [13]. At time t0, we use the calculated optimal control
sequence u∗(t0), and at time t1, we construct a feasible con-
trol sequence {u∗∆0

(t0), . . . , u∗N−1(t0), u#
N , . . . , u

#
N+∆0−1},

where u#
i = κ(x̂i−∆0(t1|t−1 )), i = N, . . . , N + ∆0 − 1.

The result can be obtained by calculating VN (x̂(t1|t−1 ))−
V ∗N (x̂(t0|t−0 )), which is omitted here.

Lemma 5: Suppose that Assumption 3 and 4 hold. If
∆0 > N , then there exists positive constant Ω0 such that

E
{
V ∗N (x̂(t1|t−1 ))− V ∗N (x̂(t0|t−0 ))

∣∣ξ(t0), E0
1 , E0

2 , E1
1

}
≤(γ∆0−N − 1)Vf (x̂∗N (t0|t−0 ))

−
N−1∑
i=0

l(x̂∗i (t0|t−0 ), u∗i (t0)) + Ω0E{‖w‖s}

Proof: Given the conditions that E0
1 , E0

2 , E1
1 , the result

for two cases, t−1 ≤ t0 +N ≤ t1 and t0 +N < t−1 ≤ t1, is
obtained by virtue of Lemma 1 and Assumption 4.

In what follows, we can come to a preliminary conclusion
according to the above results.

Theorem 1: Suppose that Assumption 1, 3, 4 hold,
papsλx < 1, and the prediction horizon N is chosen such
that [pN+1

a (1− ps)
1− paγ

− pN+1
s (1− pa)

1− psγ
] γ − 1

pa − ps
<

µ

1− µ
for pa 6= ps, and

pNs
[
N(1− ps)(1− psγ) + (1− p2

sγ)
]

(1− psγ)2/(γ − 1)
<

µ

1− µ

for pa = ps, where µ , inf l(x)
Vf (x) , then there exist constants

C1 and ρ such that

E{J(x(t1))|ξ(t0)}
≤C1E{‖w‖s}+ (1− ρ)E{J(x(t0))|ξ(t0)} (18)

Proof: We only deal with the pa 6= ps case. For pa =
ps, the result can be obtained by similar method. Due to the
limited space, a short sketch of the proof is presented in the
following. Notice that

J(x(t1))− J(x(t0))

≤
∣∣J(x(t1))− V ∗N (x̂(t1|t−1 ))

∣∣+ V ∗N (x̂(t1|t−1 ))

− V ∗N (x̂(t0|t−0 )) +
∣∣V ∗N (x̂(t0|t−0 ))− J(x(t0))

∣∣
First, we obtain that

E{|J(x(t1))− V ∗N (x̂(t1|t−1 ))|
∣∣ξ(t0), E0

1}

≤λ̄N
∞∑
q1=0

1− λq1x
1− λx

[(pspa)q1 − (pspa)q1+1]E{‖w‖s}

and

E{|J(x(t0))− V ∗N (x̂(t0|t−0 ))|
∣∣ξ(t0), E0

1}

≤λ̄N
1− λq0x
1− λx

E{‖w‖s}

By the total probability formula and some rearrangements,
it yields

E{V ∗N (x̂(t1|t−1 ))− V ∗N (x̂(t0|t−0 ))
∣∣ξ(t0), E0

1}
≤Γq0E{‖w‖s}+ ΛNVf (x̂∗N (t0|t−0 ))− l(x̂∗(t0|t−0 ), u∗0(t0))

where ΛN =
[pN+1

a (1−ps)
1−paγ − pN+1

s (1−pa)
1−psγ

]
γ−1
pa−ps and Γq0 are

two finite constants.
Since Vf (x̂∗N (t0|t−0 )) ≤ Vf (x̂∗(t0|t−0 )), and N is chosen

such that
[pN+1

a (1−ps)
1−paγ − pN+1

s (1−pa)
1−psγ

]
γ−1
pa−ps < µ

1−µ , where
µ , inf l(x)

Vf (x) , we have l(x̂∗(t0|t−0 ))−ΛNVf (x̂∗N (t0|t−0 )) ≥
ρVf (x̂∗(t0|t−0 )) ≥ ρV ∗N (x̂∗(t0|t−0 )), where ρ , −(ΛN −
(1 + ΛN )µ) > 0. Then, according to the definition of the
conditional expectation, we have

E{J(x(t1))− J(x(t0))|ξ(t0)}

=

∞∑
q0=0

E{J(x(t1))− J(x(t0))|ξ(t0), E0
1}Pr{E0

1}

≤C1E{‖w‖s} − ρE{J(x(t0))|ξ(t0)}

If pspaλx < 1 holds, it can be verified that C1 is finite.
Remark 5: In Theorem 1, the relation of prediction hori-

zon and two packet loss probabilities is derived, that is[pN+1
a (1−ps)

1−paγ − pN+1
s (1−pa)

1−psγ
]
γ−1
pa−ps <

µ
1−µ . It can be observed

that if ps = 0 (or pa = 0), the inequality becomes pNa (γ−1)
1−paγ <

µ
1−µ . This is consistent with the results obtained in [16] and
in [13] by letting q = 1− p. So these results can be viewed
as special cases of our result.

Theorem 2: Suppose that Assumptions 1 ∼ 4 hold,
pspaλx < 1, and the prediction horizon N is chosen
properly, then there exist constants D1 and D2 such that,
for all k ∈ N0

max
τ∈{tk,tk+1,...,tk+∆k−1}

E{‖x(τ)‖s}

≤D1(1− ρ)kE{‖x0‖s}+D2E{‖w‖s} (19)

and E{‖x(τ)‖s} ≤ D1E{‖x0‖s}+D2E{‖w‖s} for all τ ∈
[tini, t0 − 1].

The proof is omitted here due to space limitations.
Remark 6: The above theorem indicates that if the condi-

tions of the theorem are satisfied, then the closed loop system
is stochastic stable and E{‖x(k)‖s} is bounded for all k ≥
tini. Furthermore, one obtains that limk→∞E{‖x(k)‖s} ≤
D2E{‖w‖s}. Therefore, for a disturbance-free system, it
yields limk→∞E{‖x(k)‖s} = 0. Unlike the result stated
in [17] where the input-to-state practical stability condition
is established and the ultimate bound will not converge to
zero even for the disturbance-free system.
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V. NUMERICAL EXAMPLE

In this section, we show the effectiveness of our results
by a numerical example.

Example 1: [13] We consider the following nonlinear
system

x1(k + 1) = x2(k) + u1(k) + w1(k)

x2(k + 1) = −sat(x1(k) + x2(k)) + u2(k) + w2(k)

where

sat(x) =


−1 if x < −1,
x if −1 ≤ x ≤ 1,
1 if x > 1.

and w1(k), w2(k) are i.i.d Gaussian distribution N(0, 0.01).
The constraint of the second component of control input
is u2(k) ∈ [−0.8, 0.8],∀k ∈ N0. As analyzed in [13], we
have λx = 1.618, λw = 1 and s = 1. If we choose
the weighting function as l(x, u) = ‖x‖ + 0.5‖u‖ and
Vf (x) = 2‖x‖, then we obtain the parameters λl = αl = 1,
λf = αf = 2 such that Assumption 1 and Assumption 2
are satisfied. The constrained control law κ is chosen as
κ(x) = [−x2 0.8sat(x1 + x2)]T , Assumption 3 is then
satisfied. Besides, the introduced network brings the random
packet losses. Suppose ps = 0.5 and pa = 0.3, then we have
pspaλx < 1. When γ = 1.618 and η = 2, the open-loop
system satisfies Assumption 4 with paγ < 1 and psγ < 1.
To guarantee the stability, the prediction horizon based on
Theorem 1 should satisfy N ≥ 3 with µ = 0.5. We choose
N = 3 here.

Fig. 3 illustrates the state response and the possible
realizations of the random packet losses of two channels (0
means packet loss occurs). For C-A channel, there are no
values at some time instants. This implies the smart controller
does not take any action at these time instants. From the
first subfigure, we can conclude that the state will converge
ultimately to a bounded set.

VI. CONCLUSION

We have studied the NCS where the packet-based model
predictive controller communicates with sensor and actuator
through two unreliable networks suffered from stochastic
packet losses. To establish the stability conditions, a new
cost function, which depends on the actual state and control
sequence calculated by estimated state, has been constructed.
Furthermore, we have given the relation of prediction hori-
zon and packet loss probability to guarantee the stochastic
stability. Finally, the effectiveness has been verified by a
numerical example. Future research could include the study
of MPC-based scheduling problem, including decentralized
scheduling [18] and centralized scheduling [19].
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