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Abstract: The stochastic stabilisation of networked control systems is investigated with a special focus on the lossy multi-packet
transmission in the wireless communication context. The resulting partially available system states due to multi-packet
transmission are firstly reconstructed at the controller, and the sufficient conditions for stochastic stability are then given for the
closed-loop system, which finally leads to a controller design method with explicit consideration of multi-packet transmission.
The proposed theoretical results are verified by both numerical and TrueTime-based examples.

1 Introduction
Networked control systems (NCSs) are control systems in which
the data is transmitted by some form of non-control-dedicated
communication networks such as the internet. The data can be in
the sensor-to-controller channel, the controller-to-actuator channel
or both. The introduction of the communication network in NCSs
brings benefits including, e.g. reduced implementation cost, easier
maintenance, capability of remote operation, and so forth [1, 2],
making NCSs the desired control framework for many practical
fields such as the intelligent factory, internet of things, unmanned
vehicles etc. [3–5]. These advantages are, unfortunately, obtained
at the cost of possible performance degradation due to the
introduction of the communication networks to control systems,
since the communication network inevitably causes imperfect data
transmission, by introducing the network constraints including data
packet loss, network-induced delay, disorder of received packets
etc. [6]. To overcome these difficulties, tremendous efforts have
been made by the scientists and engineers in the field, and various
control theories and techniques have been applied to NCSs, e.g.
robust control theory [7–9], approaches based on Markov jump
systems [10–12], predictive control [13–15], and joint design
schemes between communication and control [16–18], to name a
few.

Among all these available studies, one particular scenario has
not been investigated sufficiently to date, i.e. the so-called ‘multi-
packet transmission’, where the sensing data or the control data at
each step is transmitted via multiple separate data packets [19–21].
This scenario can be caused by different reasons, as discussed in
[22]. One reason can be due to the multiple, distributed sensors
[23, 24], whose sensing data cannot be aggregated and integrated
into a single data packet to transmit. Another reason can be due to
either the sensing or control data, exceeding the size of the allowed
effective load of the communication network, which is then forced
to be divided into smaller portions. We acknowledge that the
second cause of multi-packet transmission may be of more
importance theoretically, since typical NCSs should use data
networks, and data networks are supposed to allow rather large
data packets. For example, the MAC frame of IEEE 802.11 allows
a maximum load of 2312 bytes, which far exceeds the needed size
of most NCS applications. On the other hand, with the increasing
use of wireless communications in NCSs, more and more devices
can now be connected in a distributed fashion using various
wireless communication technologies, and due to the distributed
structure of the system, sensors may have to send their sensing data

independently and separately, thus making the first cause of multi-
packet transmission even worse. Therefore, more efforts have to be
made to achieve a reliable control performance in the presence of
multi-packet transmission, especially in the context of using
wireless communications in NCSs.

To date, we have seen a large number of control algorithms
solving a packet loss issue with the single-packet transmission. For
example, the controller design problem was considered in [25] for
systems with both bounded random packet loss and channel
uncertainty; a non-cooperative linear quadratic game was used to
design the optimal decentralised state-feedback controllers in [26]
for a wireless sensor and actuator network with stochastic delays
and packet losses; the output feedback guaranteed cost control
issue was considered in [27] for NCSs with random packet
dropouts and time delays; a novel state space model was proposed
in [28] with the corresponding model predictive tracking control
algorithm to deal with systems subject to packet loss and
uncertainties. Also, a lot more other works, which are not listed
here, have made great achievements in dealing with packet loss
under single-packet transmission.

Despite these aforementioned achievements, most employed
approaches for single-packet transmission are, however, not
directly applicable to multi-packet transmission. Indeed, multi-
packet transmission results in a unique feature in terms of packet
loss, i.e. different parts of the data are transmitted independently
and can thus face different network conditions and hence different
loss probabilities. This unique feature fails most conventional
studies for single-packet transmission and requires dedicated
design and analysis for multi-packet transmission. Furthermore, as
mentioned earlier multi-packet transmission can be more popular
in the context of wireless communications while being wireless
means packet loss can be more dominant than packet delay, yet
conventional NCS studies more focus on the effect of time delays.
Some pioneering works have been reported for multi-packet NCSs.
To name a few, an observer-based networked predictive control
approach was proposed for discrete-time NCSs with multi-packet
transmission in [29] to compensate for multiple delays and packet
dropouts; by modelling the packet loss process as a Markov chain
the stochastic stability conditions were given in [30]; by modelling
the packet loss process as an independent and identical Bernoulli
process, the state feedback controller was designed in [31];
continuous-time NCS with lossy multi-packet transmissions was
considered in [32], and so forth. These studies have explicitly
considered the unique feature of multi-packet transmission, but
most of them have more focused on the controller side while
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ignoring the possibility of improving the system performance by
actively compensating the missing partial data, which thus
motivates the present work.

In this work, we investigate the design and analysis of NCSs
with packet dropout incurred by multi-packet transmission,
inspired by the general context of using wireless communications
in NCSs. After carefully formulating the problem, sufficient
conditions are proposed to guarantee the stochastic stability of the
closed-loop NCS, with a corresponding controller design method.
The approach adopts a particular active compensation scheme by
taking better advantage of the available information at the
controller side, making it distinct from most existing approaches.

The remainder of the paper is organised as follows. Section 2
formulates the problem. The stability conditions and controller
design method are given in Section 3. Both numerical and
TrueTime-based examples are provided in Section 4 to illustrate
the effectiveness of the proposed method. Finally, the paper is
concluded in Section 5.

2 Problem formulation
The considered NCS with lossy multi-packet transmission is first
formulated, followed by the closed-loop system description with a
state reconstruction method to deal with the multi-packet
transmission.

2.1 NCSs with lossy multi-packet transmission

The considered system setup is depicted in Fig. 1, where the data
transmission in the controller-to-actuator channel is perfect while
the sensor-to-controller channel suffers the so-called ‘multi-packet
transmission’, i.e. q independent sensors sample the plant
individually and then send the sensing data via the communication
channel independently. 

The plant is described as follows:

x~(k + 1) = A~x~(k) + B~u (k), (1)

where x~(k) ∈ ℝn, u (k) ∈ ℝm, A~ ∈ ℝn× n, and B~ ∈ ℝn× m are the state
vector, the control input, and the system and input matrices,
respectively.

In our system setting as depicted in Fig. 1, multiple sensors are
present and each sensor may correspond to several components of
the system states, but the system state is not necessarily organised
corresponding to the order of the sensors. We realise later that it
can help the design and analysis if the data from each sensor can be
readily extracted from the system state, i.e. the following new state
vector x(k) obtained by organising the states contributed by each
sensor sequentially is preferred rather than the original state x~(k)

x(k) = [(x1(k))T, (x2(k))T, …, (xq(k))T]T

= [x1(k) x2(k)…xn(k)]T,
(2)

where xi(k) is the ci-dimensional sensing data contributed by sensor
i, ∑i = 1

q ci = n, and xi(k) is the ith element of x(k).
Notice that the n elements in x~(k) is in fact a permutation of the

elements in x(k). Suppose the ith element in x~(k) is the pi element
in x(k), then x~(k) can also be rewritten in terms of xi(k), as follows:

x~(k) = [xp1(k) xp2(k)…xpn(k)]T . (3)

From (2) and (3), it is clear that a finite exchange sequence of
the elements in x~(k) must exist, which reorders x~(k) to form x(k).
Denote such a sequence by ! = {[i1, i2]}, where [i1, i2] means at the
ith step exchange the i1th and i2th elements in x~(k). Notice that
every exchange operation can be recorded by a swapping matrix,
i.e. after exchange operation [i1, i2] on x~(k) the new state is Si1, i2x

~(k),
where the swapping matrix Si1, i2 is obtained by swapping the i1th
and i2th columns of the n-dimensional identity matrix.

It is then obtained that

x(k) = Sx~(k), (4)

where S = ∏[i1, i2] ∈ ! Si1, i2.
It is clear that the linear transformation in (4) does not change

any system behaviours such as stability and robustness, and hence
in what follows we may safely assume that the states have already
been reordered according to the sequence of the sensor without loss
of generality.

The plant considered is of the following form:

x(k + 1) = Ax(k) + Bu (k) . (5)

 
Remark 1: The key technique to obtain the finite exchange

sequence ! is in fact increasingly sorting the sequence
pi, i = 1, 2, …, n, which can be solved by almost any classic sorting
algorithms. For example, using the bubble sorting algorithm, we
may from p1 sequentially exchange the positions of the two
adjacent elements, making the smaller one ahead. Other algorithms
work alike. From this discussion, we may also notice ! is not
unique.

These sorting algorithms guarantee an invertible transformation
from x~(k) to x(k), which is necessary for our later discussion. If, on
the other hand, what we are interested in is only to obtain x(k) from
x~(k), the following simple equation may work well:

x(k) = [InIn]∏
i = 1

n
Si, n+ pi[x~

T(k) 0n]T,

where In is the n-dimensional identity matrix, 0n is the n-
dimensional zero vector, and the 2n-dimensional swapping matrix
Si, j is defined similarly.

As mentioned earlier, the data sent from each sensor to the
controller can be lost. As assumed in [31], the successful
transmission of the sensing data of sensor i, i.e. xi(k), can be
modelled as an independent Bernoulli process, denoted by αk

i , i.e.

αk
i = 1 xi(k) is successfully transmitted,

0 otherwise, (6)

where

"{αk
i} = αi, (7a)

"{(αk
i − αi)2} = σi

2 . (7b)

 
Remark 2: By (6) the sensing data from each sensor can be lost.

Suppose at time k at the controller side the sensing data from

Fig. 1  Networked control systems with multi-packet transmission
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sensor i experience τi consecutive data loss, then the system state at
the controller side can be written as follows:

x(k) = [x1(k − τ1) x2(k − τ2)…xq(k − τq)] .

The above equation explains the key challenge caused by multi-
packet transmission in NCSs: the system state at the controller side
is ‘partially lost’, as different parts of the state at the controller side
(corresponding to different sensors) may have different delays, i.e.
generally τi ≠τ j, i ≠ j, i, j = 1, 2, …, q.

 
Remark 3: In our problem setting, the sensor-to-controller

channel contains multiple lossy data links while the data
transmission in the controller-to-actuator channel is perfect. This
seemingly strange system structure is proposed to model the
scenario of using wireless communications in NCSs. Indeed, with
wireless communication in Fig. 1, the multiple sensors share the
same wireless channel and have to compete with each other to send
their data to the controller, but the controller can regard the
wireless channel as private to it and thus the control data can be
sent directly to the actuator without competition. From the control
system perspective this system setting thus produces a lossy
sensor-to-controller channel, but a perfect controller-to-actuator
channel, given that the performance of the wireless channel itself is
guaranteed (or at least with a very low loss rate thus ignorable
safely). The use of wireless communication also explains why we
do not consider a delay in our system setting: the considered
system is supposed to be physically located in a relatively small
area due to the use of wireless communication, and in this case,
data packet dropout is more dominant than delay [33].

2.2 Closed-loop system with state reconstruction

Conventional methods of dealing with partial packet loss due to
multi-packet transmission (as detailed in Remark 2), either by
using the last available whole packet or replacing the unknown
parts by 0, are clearly conservative [33–35]. In this work, a system
state reconstruction method as proposed in [22] is used to
reconstruct the partial lost information.

Taking consideration of the q sensors, the system matrix A and
input matrix B in (5) can be divided into q × q and q × 1 block
matrices, as follows:

A =

A11 A12 … A1q

A21 A22 … A2q

⋮ ⋮ ⋱ ⋮
Aq1 Aq2 … Aqq

, B =

B1

B2

⋮
Bq

, (8)

where Ai j ∈ ℝci × cj, i = 1, 2, …, q, j = 1, 2, …, q, and Bi ∈ ℝci × m.
Then

xi(k + 1) = ∑
j = 1

q
Ai jx j(k) + Biu (k), (9)

where i = 1, 2, …, q.
Due to the independent packet loss of each sensor, usually not

all the states x j(k), j = 1, 2, …, q, are available to the controller. To
deal with this packet loss, we use the following technique to
reconstruct the state of sensor i at time k + 1 using (9), denoted by

x̂i(k + 1) = ∑
j = 1

q
Ai jx̄ j(k) + Biu (k), (10)

where x̄i(k) = αk
i xi(k) + (1 − αk

i)x̂i(k), i.e. the estimated partial state
is only used in the absence of the actual partial state.

Let x̄T(k) = [(x̄1(k))T, (x̄2(k))T, …, (x̄q(k))T], we obtain

x̄(k) = Θkx(k) + (I − Θk)x̂(k), (11)

where

Θk =

αk
1Ic1 × c1

αk
2Ic2 × c2

⋱
αk

qIcq × cq

. (12)

It follows that (10) can be written in a compact form

x̂(k + 1) = Ax̄(k) + Bu (k) . (13)

A state feedback controller can now be designed as
u (k) = Kx̄(k) or alternatively

u (k) = KΘkx(k) + K(I − Θk)x̂(k), (14)

where K ∈ ℝm × n is the feedback gain matrix.
By defining ηT(k) = [xT(k), x̂T(k)], from (5), (13) and (14) the

closed-loop NCS is obtained as

η(k + 1) = Φkη(k), (15)

where

Φk =
A + BKΘk BK(I − Θk)

(A + BK)Θk (A + BK)(I − Θk)
. (16)

3 Closed-loop stability and controller design
In this section, new sufficient conditions for the stochastic stability
of the closed-loop system are given, and the controller in (14) is
designed.

3.1 Closed-loop stability

The following stochastic stability definition is introduced.
 

Definition 1: The closed-loop system in (15) is said to be
stochastic stability if for any initial value η(0) it holds that

" ∑
k = 0

∞
∥ η(k) ∥2 < ∞ . (17)

 
Theorem 1: For given feedback gain K, the closed-loop system

in (15) is stochastic stability if there exist scalars γ1, γ2 > 0 and
positive definite matrices P > 0 and Q > 0 such that

(BK)TPBK < γ1I, (18a)

(A + BK)TQ(A + BK) < γ2I, (18b)

M1
TPM1 + M2

TQM2 + M3
TM3 + M4

TM4 − P 0
0 Q

< 0, (18c)

where

M1 = A + BKΞ BK(I − Ξ) , (19a)

M2 = (A + BK)Ξ (A + BK)(I − Ξ) , (19b)

M3 = γ1 ∑
i = 1

q
σiEi − γ1 ∑

i = 1

q
σiEi , (19c)

M4 = γ2 ∑
i = 1

q
σiEi − γ2 ∑

i = 1

q
σiEi , (19d)

with αi and σi being defined in (7a) and (7b), respectively,
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"{Θk} = Ξ = diag{α1Ic1 × c1, …, αqIcq × cq}

and

Ei = diag{0, …, 0, Ii
ci × ci, 0, …, 0} .

 
Proof: We prove the theorem by the following three steps.

Firstly, we define the following Lyapunov functional:

V(k) = x(k)TPx(k) + x̂(k)TQx̂(k) . (20)

From (16), we can obtain that

"{ V(k + 1) x(k), x̂(k)} − V(k)
= "{x(k + 1)TPx(k + 1) + x̂(k + 1)TQx̂(k + 1)

x(k), x̂(k)} − V(k)
= "{[(A + BKΘk)x(k) + BK(I − Θk)x̂(k)]TP

× [(A + BKΘk)x(k) + BK(I − Θk)x̂(k)] + [(A
+BK)Θkx(k) + (A + BK)(I − Θk)x̂(k)]TQ[(A
+BK)Θkx(k) + (A + BK)(I − Θk)x̂(k)]} − x(k)T

× Px(k) − x̂(k)TQx̂(k)
= "{[(A + BKΞ)x(k) + BK(Θk − Ξ)x(k) + BK(I

−Ξ)x̂(k) + BK(Ξ − Θk)x̂(k)]TP[(A + BKΞ)x(k)
+BK(Θk − Ξ)x(k) + BK(I − Ξ)x̂(k) + BK(Ξ
−Θk)x̂(k)] + [(A + BK)Ξx(k) + (A + BK)(Θk

−Ξ)x(k) + (A + BK)(I − Ξ)x̂(k) + (A + BK)(Ξ
−Θk)x̂(k)]TQ[(A + BK)Ξx(k) + (A + BK)(Θk

−Ξ)x(k) + (A + BK)(I − Ξ)x̂(k) + (A + BK)(Ξ
−Θk)x̂(k)]} − x(k)TPx(k) − x̂(k)TQx̂(k) .

(21)

Secondly, we consider the expression obtained above item by
item.

Noting that "{Θk − Ξ} = 0, we have

"{V(k + 1) x(k), x̂(k)} − V(k) = V1(k) + "{V2(k)} − V3(k),

where

V1(k) = η(k)TΛ1η(k),

V3(k) = η(k)TΛ3η(k),

with Λ3 = P 0
0 Q

 and Λ1 = M1
TPM1 + M2

TQM2. M1 and M2 are

given by (19a) and (19b), respectively.
Define

"{V2(k)}) = "{V21(k) + V22(k)},

where

"{V21(k)} = "{[BK(Θk − Ξ)x(k) + BK(Ξ − Θk)x̂(k)]T

× P[BK(Θk − Ξ)x(k) + BK(Ξ − Θk)x̂(k)]}, (22)

"{V22(k)} = E{[(A + BK)(Θk − Ξ)x(k) + (A + BK)(Ξ
−Θk)x̂(k)]TQ[(A + BK)(Θk − Ξ)x(k) + (A
+BK)(Ξ − Θk)x̂(k)]} .

(23)

Let y(k) = x(k) − x̂(k). From (12) and the fact that the random
variables αk

1, …, αk
q are independent of each other, it holds that

"{V21(k)} = ∑
i = 1

q
y(k)Tσi

2Ei(BK)TP(BK)Eiy(k)

⩽ γ1 ∑
i = 1

q
(σiEiy(k))T(σiEiy(k))

= γ1 ∑
i = 1

q
(σiEiy(k))T(σiEiy(k))

+γ1 ∑
i = 1, j = 1, i ≠ j

q
(σiEiy(k))T(σ jEjy(k))

= γ1 ∑
i = 1

q
σiEiy(k)

T

∑
i = 1

q
σiEiy(k) ,

(24)

where γ1 = λmax((BK)TPBK) and λmax((BK)TPBK) > 0 denotes the
maximal eigenvalue of (BK)TPBK. It follows that

"{V21(k)} ⩽ η(k)TΛ21η(k), (25)

where Λ21 = M3
TM3 with M3 being given by (19c).

Similarly, the following inequality holds:

"{V22(k)} ⩽ η(k)TΛ22η(k), (26)

where Λ22 = M4
TM4 with M4 being defined in (19d) and

γ2 = λmax((A + BK)TQ(A + BK)), λmax((A + BK)TQ(A + BK)) > 0
denotes the maximal eigenvalue of (A + BK)TQ(A + BK).

Lastly, we consider back to the Lyapunov functional.
From above, we obtain

"{V(k + 1) x(k), x̂(k)} − V(k) ⩽ η(k)TΛη(k), (27)

where

Λ = Λ1 + Λ21 + Λ22 − Λ3 .

It follows from (18c) that Λ < 0, and hence

"{V (k + 1) x(k), x̂(k)} − V(k)
⩽ η(k)TΛη(k) ⩽ − βη(k)Tη(k),

(28)

where β = λmin( − Λ), λmin( − Λ) denotes the maximal eigenvalue of
−Λ.

From (28), for any t > 0, we have

"{V(η(k))} − {V(η(0))} ⩽ − β ∑
k = 0

t
"{η(k)Tη(k)} (29)

and for any m > 0

∑
k = 0

m
"{η(k)Tη(k)} ⩽ 1

β ({V(η(0))} − "{V(η(k))})

⩽ 1
β{V(η(0))} < ∞,

(30)

which completes the proof by Definition 1. □

3.2 Controller design

Suppose εi, i = 1, 2, …, m are the non-zero singular values of B.
Then by singular value decomposition there exist orthogonal
matrices U ∈ ℝn× n and V ∈ ℝm × m such that

B = U
Σ
0 VT, (31)
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where Σ = diag{ε1, ε2, …, εm}.
We have the following lemma from [37].
 
Lemma 1: Given B in (31). For matrix P of the following

structure:

P = U
P1 0
0 P2

UT, (32)

there exists matrix Z ∈ ℝm × m such that PB = BZ and
Z = VΣ−1P1ΣVT, where P1 ∈ ℝm × m and P2 ∈ ℝ(n− m) × (n− m).

 
Theorem 2: The closed-loop system in (15) with the controller

in (14) is stochastic stable, if there exists scalars γ1, γ2 > 0 and a
positive definite matrix P ∈ ℝn× n with the structure as in (32) and
a matrix M with an appropriate dimension such that (see (33a)) 

−γ1I *
BM −P

< 0, (33b)

−γ2I *
PA + BMC −P

< 0. (33c)

Furthermore, the control gain is given by

K = VΣ−1P1
−1ΣVTM . (34)

 
Proof: Firstly, we rewrite (18c) as follows by using the Schur

complement:

−P * * * * *
0 −Q * * * *

A + BKΞ BK(I − Ξ) −P−1 * * *
(A + BK)Ξ (A + BK)(I − Ξ) 0 −Q−1 * *

γ1 ∑
i = 1

q
σiEi − γ1 ∑

i = 1

q
σiEi 0 0 −I *

γ2 ∑
i = 1

q
σiEi − γ2 ∑

i = 1

q
σiEi 0 0 0 −I

< 0.

(35)

Then pre- and post-multiplying (35) with diag{I, I, P, Q, I, I},
we have

−P * * * * *
0 −Q * * * *

PA + PBKΞ PBK(I − Ξ) −P * * *
(QA + QBK)Ξ (QA + QBK)(I − Ξ) 0 −Q * *

γ1 ∑
i = 1

q
σiEi − γ1 ∑

i = 1

q
σiEi 0 0 −I *

γ2 ∑
i = 1

q
σiEi − γ2 ∑

i = 1

q
σiEi 0 0 0 −I

< 0.

(36)

Similarly the constraint conditions (18a) and (18b) in Theorem
1 are transformed into (33b) and (33c), respectively.

According to Lemma 1, there exists a non-singular matrix P
having the structure (32) such that PB = BP1. Let M = P1K and
Q = P. Thus (36) is transformed into (33a) and we obtain the
control gain matrix as in (34) by using the feasp solver available in
the MATLAB LMI toolbox to solve the constraint conditions. This
completes the proof. □

3.3 Algorithm

Now, the proposed algorithm (see Fig. 2) for closed-loop NCS can
be organised as follows. 
 

Remark 4: In practical applications noises, disturbances and
model uncertainties are always part of the system and may severely
affect the system performance. In the present work, we work on the
nominal system since what matters to us the most is how to deal
with a multi-packet transmission in NCSs but not others. It is also
well known that most controllers do guarantee certain stability
margins and are thus immune to noises and disturbances to a
certain extent. Furthermore, the real-time system state
reconstruction is done at every step, which can also reduce the
negative effects of noises and disturbances, recalling the receding
horizon concept.
 

Remark 5: In the present work, we more focus on the control
scheme design and closed-loop stability analysis but not any
further optimal indices of the control system. However, such a
performance index may readily be included within the H2, H∞ or
other control frameworks, and will be our future research
directions.

4 Simulation examples
Two examples are presented to illustrate the effectiveness of the
proposed method in this study. One is totally numerical, mainly to
show the effectiveness in a well-defined system setting, and the
other is based on the widely used TrueTime toolbox, for the
verification in a relatively more realistic setting with more
uncertainties.

−P * * * * *
0 −P * * * *

PA + BMΞ BM(I − Ξ) −P * * *
(PA + BM)Ξ (PA + BM)(I − Ξ) 0 −P * *

γ1 ∑
i = 1

q
σiEi − γ1 ∑

i = 1

q
σiEi 0 0 −I *

γ2 ∑
i = 1

q
σiEi − γ2 ∑

i = 1

q
σiEi 0 0 0 −I

< 0, (33a)

Fig. 2  Algorithm 1
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4.1 Numerical example

Consider the following system, which adds a disturbance term w(k)
to the considered plant in (5):

x(k + 1) = Ax(k) + Bu (k) + w(k), (37)

where the system matrices are taken from [31]

A =
1.7 0.4 1.8
−2 −0.8 −3.1

−3.2 −1.5 −1.2
, B =

0.5 0
0 0.5
1 0.5

,

and w(k) is a Gauss white noise with the variance being 0.01.
In our system setting, each of the three system states is sampled

and sent by one of the three sensors, and the three sensors are
independent of each other. The data packet sent from each sensor
has the same probability of 0.25 to be lost, and the initial system
state is set as x(0) = [ − 5, 4, 5]T.

Using Theorem 2, we obtain the following controller gain:

K = −0.4673 0.0169 −1.9479
5.0939 2.2630 5.8885 ,

With conventional state feedback, the control signal has to be
designed using the last received whole system state, where the
controller gain can be designed as follows [31]:

KC = −1.0990 0.4548 −0.5830
1.8160 0.7814 1.6750 .

The state trajectories and control signals with both controllers
are shown in Figs. 3 and 4. It is seen that the controller designed by
our approach leads to a stable trajectory, while the conventional
control method causes instability of the system. 

To further illustrate the effectiveness of our proposed method,
with the above system structure, we perform extensive simulations
over five parameter sets containing different packet loss
probabilities of the sensors. The results are summarised in Table 1.
It is clearly seen that our approach generally leads to a more stable
closed-loop system, even in the statistical sense. 

4.2 TrueTime-based example

A TrueTime-based example is illustrated. TrueTime [38] provides a
MATLAB/Simulink-based toolbox to simulate most existing
communication networks with the support of a wide range of
communication protocols. One may combine the TrueTime toolbox
with the original support of MATLAB/Simulink for dynamic
systems to simulate NCSs in a more realistic way. This capability
makes the toolbox very popular in the NCSs community.

In the simulation, the plant in (5) with the following system
matrices borrowed from [39] is considered

A =
0.9850 −0.0348 −0.0248
0.0050 0.9999 −0.0001
0.0001 0.0050 1.0000

, B =
0.0050
0.0001
0.0002

, (38)

where the three states are sampled by three independent sensors,
respectively. The initial system state is set as
x(0) = [ − 1, − 1, − 1]T.

The wireless network is implemented using the TrueTime 2.0
toolbox, whose system diagram is shown in Fig. 5. We use the
802.11b (wireless local area network) protocol with the data rate
being 80,000 bits/s and the minimum frame size being 20 bits. The
packet loss probability is set as 0.2. 

Using Theorem 2, we obtain the controller gain as follows:

K = −1.0322 −0.3377 0.3454 .

With the predictive-based control method as proposed in [40],
the controller gain is designed as follows [40]:

KPC = 1.8441 2.2036 0.8488 .

The state trajectories using our approach and the method in [40]
are compared in Fig. 6, which clearly shows that our proposed
approach fast stabilises the system while the method in [40] may
lead to dramatic fluctuations. 

Fig. 3  System responses using control method from [31]
 

Fig. 4  System responses using our proposed approach
 

Table 1 Performance comparison using a large number of
simulations. 50 simulations are performed for each
parameter set

Dropout
probabilities

Percentage of resulting stable
trajectories

[α1 α2 α3] Our approach, % Conventional method,
%

[0.1 0.1 0.1] 100 84
[0.2 0.2 0.2] 100 64
[0.25 0.25 0.25] 100 42
[0.3 0.3 0.3] 100 28
[0.35 0.35 0.35] 98 14
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In the above two examples, our approach is shown to be
superior to the conventional methods. This should be mainly due to
the fact that our approach takes better use of the incomplete state
information at the controller side.

5 Conclusion
Inspired by using wireless communications in networked control
systems, multi-packet transmission is investigated within the
stochastic stability framework. The sufficient conditions for
ensuring the stochastic stability as well as the corresponding
controller design method are given. The present work considers
only packet dropout in order to simplify the problem setting, which
may be extended in our future works. We are witnessing the
technical integration of wireless communications and control
systems, which have enabled many significant applications in the
Industry 4.0 era. As one fundamental technical issue underlying
such integration, we believe the efficient treatment of multi-packet
transmission in NCSs will receive more attention in the future.
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