A Brief Tutorial
and Survey on
Markovian

Jump Systems

©ISTOCKPHOTO.COM/IPOPBA

by Ping Zhao, Yu Kang, arkovian jump systems (MJSs) can be regarded as a
and Yun-Bo Zhao special type of jump system, whose jumping law gov
erning the switches among the subsystems are a Mar
kovian chain or process [1]. Similar to other control
systems, the subsystems in MJSs are usually
described by some type of dynamic equations, while a Markov process
that can be either continuous time or discrete time describes the jump-
i S e T o A A e ing law. On the other hand, MJSs also are hybrid dynamic systems typi
Date of publication: 18 April 2019 cally consisting of both the dynamic state space and the set of discrete
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events, where a Markov process describes the discrete
events for MJSs[2], [3].

Other than their own theoretical and practical
importance, by their nature, MJSs provide a powerful
tool for modeling and controlling various practical sys -
tems such as, networked control systems[4], [5], manu-
facturing applications [6]E[8], economics systems
[9]BI11], power engineering [13],
[14], aerospace engineering[12],
and communication systems[15],
[16]. Many engineering systems
may experience sudden switches
of their working points, due to
sudden failure of system compo-
nents or interconnection parts,
abrupt environmental distur-
bances that may drive the work-
ing point away, or nonlinearity of
the plant that may lead to a leap
of the working point. We see that
these switches of the working
points are either practically
memoryless, i.e., the current
switch does not depend on the
switches from a long time ago, or historically depen-
dent, but it is simply too difficult or unnecessary to
include the historical dependence in the model. There
fore, the switches are often assumed to be Markovian
and hence result in an MJS.

Based on its theoretical and practical importance,
the study of MJSs has attracted a lot of attention from
the control community since its first introduction in
1961[1], and are still prominent today. Researchers
have borrowed many concepts, tools, and methods
from other control domains to study the tracking, sta-
bility, optimization, and fault tolerance of MJSs and
have yielded fruitful results [17], [20]8[23]. Undoubted-
ly, however, the theoretical development of MJSs has
its own unique challenges, thanks to the existence of
the exclusive Markovian jumping law. Such a law has
produced several seemingly impossible system behav
iors, such as when the stability of all the subsystems
does not guarantee the stability of the whole system,
and when the instability of all the subsystems also
may not prevent the stability of the whole system. In
addition, dealing with delays, nonlinearity, noises, dis-
turbances, modeling errors, filtering, robustness, opti-
mal control, adaptive control, and many other control
problems are also core in developing MJSs theory.
Many interesting results have been obtained in the
past several decadedq18], [19].

We provide a brief tutorial and survey of the stability
analysis and control approaches for MJSs. The scope is
not comprehensive; it focuses only the stability and con
trol aspects, of all the possible discussion points of MJSs.
We will first explain the concepts and definitions, for the
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Other than their

own theoretical and
practical importance,
by their nature, MJSs

provide a powerful
tool for modeling and
controlling various
practical systems.

benefit of the newcomers to the field, and then introduce
state-of-the-art recent developments. We hope readers
find this tutorial and survey useful.

Notations and De!nitions
Throughout this article, the vectors are in their column
form unless otherwise explicitly specified and a super-
script T is placed for the trans-
pose of vectors and matrices.
R.,R", and R™™ are for the set
of nonnegative real numbers,
n-dimensional real space, and
n# m dimensional real matrix
space, respectively. |a| is the
Euclidean norm of a! R", i.e,,
la|=(R-.a})"*. C([-n,0];R"),C,
and C', respectively, denote the
continuous R"-valued function
space defined on [- n, 0], the set
of the ith continuous differential
functions, and the set of functions
with the ith first component and
the kth second component being
continuously differentiable. For
stochastic variable x, E{x} is its expectation.
}s{ :A" C is the composition of {:A" B and
}:B" C.
We define several function classes as follows.
1) Class K function { (u) is strictly increasing in u and
{! C(R,R.),{(O=0.
2) Class K functions contain only those that are
unbounded.
3) Class KL function b:R.#R." R.:b(s,t) decreases
toOast" +3 foreachfixed s$ 0 and b($t) is of class
K in the first argument for each fixed t $ 0.
4) Class generalizedK (GK) function h:R." R. contin-
uous with h~0h=0 and satisfies

h(r)2 h(r),

ith¢)! 0
(h(rl) =h(r) =0,

ifh (r 1)=O, 6ri2r,. (l)
The following facts hold: 1) A class GK function is a
(conventional) class K function and 2) a function
b:R.#R." R. is a GKL function if for each fixed
t$0,b(s,t) is a generalized K -function and for each
fixed s$ 0 itdecreasestozeroast" T forsome T# 3.

Stability of MJSs

This section reviews multiple stability notions for MJSs,
each of which has its own values. We start from Lyapu
nov stability and then review in sequential input-to-
state stability, practical stability, and finite-time
stability. For each stability, we discuss the definition
and the criteria for ensuring the stability, as well as the
recent development of the corresponding stability anal-
ysis in the literature.



A Lyapunov Stability

Lyapunov stability is perhaps the most commonly used
stability notion, which is determined by whether the sys-
tem equilibrium point can be kept under small perturba-
tions. We discuss Lyapunov stability for linear and
nonlinear MJSs in what follows.

Lyapunov Stability of Linear MJSs
Consider the linear MJS

X(t) = A(r(t)) x(t), t$0
(x(0)=x0! R", @

where r(t) is a continuous-time discrete-state Markov
process. The state space ofr(t) is S={1,2f ,N} and
the transition probability from state i to j, i.e., p;, is
given as

pi=Pr(r(t+D)=j;r(t)=1)
rD+o(D), ilj;

:(1+ri.D+o(D), i=j, P20

with r;;$ 0 being the transition rate from state i to
J(| | j) and ri =- R?‘:l,]!l’ ij.

Definition 1: Lyapunov Stability of Linear MJSs
The equilibrium point!0 for the system in (2) is as follows:
1) asymptotically mean square stable, if 6x,! R" and for
any initial distribution (p.,f , px) of r(t) such that
lim E"<x(t,x0,~) § =0 (3a)
2) exponentially mean square stable, if 6x,! R" and for
any (p,f ,pn) of r(t), there exists constants a,b 2 0
such that
E"<X(t,Xo,~) & #a <x.<e ™, 6t $0 (3b)
3) stochastically stable, if 6x,! R" and for any (p.,f , pn)
of r(t) such that

# E"<(t,Xo,~) & dt1 +3 (3c)

4) almost surely (asymptotically) stable, if 6x,! R" and
forany (p.f ,pw) of r(t) suchthat

P#lim <x(t,xo,~) <0-= 1 (3d)

In Definition 1, the stability definitions in 1)B3)!are
equivalent, and they all imply 4)[24].

The stochastic stability conditions for the system in
(2)!proposed in Theorem 1 are sufficient and necessary.
Therefore, these conditions are also adequate and neces
sary for asymptotically mean-square stability and

exponentially mean-square stability, and are almost surely
sufficient for (asymptotically) stability.

Theorem 1:Lyapunov Stability Criteria for Linear MJSs
The system in (2) is stochastic stable if and only if there
exists matrices P,i! S such that

A'TP+RA+P 10, 4)

where Pi=R; srjP and A = A(r),r.! S. The stability
definitions and criteria for the linear discrete-time MJS

x(k+1) = A(r) x(K) )

can be obtained similarly. Due to the space restrictions of
this article, we will not provide details here; however,
interested readers may refer to [25] and [26] for further
information.

Lyapunov Stability of Nonlinear MJSs
Consider the following stochastic differential equation
with Markovian switching [26]:

dx () = f(x(t), r (t)) dt+ g(x(t),r (1)) dB(t), t$t,
X(to) = Xo (6)

with solutions defined on t $t,, initial values x,! R" and
ro! S. Here f($:R" #S" R", g($:R" #5" R" and the
m-dimensional Brownian motion B($ is defined on
(X, F,P) and is independent of r (t) . Both functions f($
and ¢($ are local Lipschitz and, consequently, the solution
to (6) is unique.

Definition 2: Lyapunov Stability of Nonlinear MJSs
The equilibrium point of the system in (6) is as follows:
1) stochastically stable, if 6x, and t,$ 0, there exists
t2 0 and ¢! (0,1) such that
Pr{lx(t,to, x0,710)|1 0, forallt=t,}=1- € (7a)
2) stochastically asymptotically stable in the large, if it is
stochastically stable and, moreover

Pri{limx (¢, to, 2o, 10) = 0}= 1 (7b)
3) almost surely exponential stable, if 6r, and to$ 0
lim sup - 1og (¢ (¢, s, @0, 1) )1 0 (7¢)
"3

4) pth moment stable, if 6r, and t,$ 0, there exists €2 0
such that
E{x(t,to, 20,10) 7}1 € (7d)

5) exponentially stable in mean square, if constants e, 2 0
and €,2 0 existand 6t$ 0
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E{|2(t, to, 20,7) )} <€1] 20| exp(—€21) (7e)

6) globally asymptotic stability in probability [27]; if for any
given € >0, a KL function B(:,-) exists satisfying

Pl to, 20, 1)< B(20|, 0} <1—e€. (7D

Lyapunov function and the comparison principle are
often used to derive the stability criteria for nonlinear
MJSs. Due to the various forms of nonlinearity, we do not
discuss the detailed stability criteria but ask readers to
refer to [28] and [29] and the references therein for fur-
ther details.

Moreover, constraints like time delays, uncertainty,
and incomplete information are often met in practice.
Many efforts have been made to deal with such problems,
such as stochastic differential delay equations with Mar-
kovian switching [30]-[32], MJSs with mode-dependent
time-varying delays [33], linear MJSs with incomplete
transition descriptions [18], [19], and linear uncertain
MJSs with mode-dependent time delays [34], just to name
a few.

Input-to-State Stability

With regard to nonlinear systems with external inputs, the
stability notions of input-to-state stability (ISS), input-to-
output stability (I0S), and integral input-to-state stability
have been developed, with fruitful results obtained in
recent years [35]-[44]. ISS is often used to aid the design of
smooth controllers or to deal with various uncertainties
that arise from applications. Many developments have
been reported for various system settings [45]—[47].

In this section, we provide the general definition of sto-
chastic ISS and the corresponding criteria. Readers may
refer to [27] and the references therein for more information.

Consider the MJSs

dx(t) = f(a(), t, (), w®)dt + g(x(t), t, r(1),
u(®))dw(®),t =0, ®

where x € R", u € R" and x,€R" are the system state, the
input, and the initial state, respectively, and the Markov
process 7(t) is defined as in (2). A unique solution to the
system, x(0,x,), i.e., E(supo=s=|x(0,2:)])<oo,Vt=>0,
1>0, is guaranteed by smooth enough f:R"XR.X
SXR"-R" and ¢:R"XR. X SXR" R [48]. On the
complete probability space (X,F ,§ }i=0, P), the r-dimen-
sional Brownian motion w(t) is defined, where X,F,
{F }>0 and P are the sample space, the v-field, the filtra-
tion, and the probability measure, respectively.

Definition 3: Stochastic ISS of MJSs

The system in (11) is stochastic ISS (SISS) if 6& >0, there
existsa K function c(") and a KL function A(:,-), such
that 6t>0 and 6 x,€R"
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P{x(t) i <b(ixo t)+c (U )} 1- f,

where

U(s) <, inf supfu(=,s)i~ ! X\A},

U gy=sup<u(s) < (©)
s! [0,t)

Theorem 2: SISS Criteria for MJSs
The system in (8) is SISS if there exists a function
V(x,t,i)eC*(R"XR.xS;R.) and functions a,,d,} €K,

such that 6(x,t,i)eR"XR. XS and ueR"™ such
that

a(Gx)#V(ID# a.(;x) (10a)

LVt # - mV(Xtix }H<u(s)9, (10b)

where L is the infinitesimal generator.

Practical Stability
Many practical applications may be asymptotically
unstable in the Lyapunov sense, while the trajectory can
stay within a certain desired region despite possible
acceptable fluctuation, e.g., the acceptable oscillation of
an aircraft or a missile. To describe such a situation, the
concept of practical stability was introduced [49]. Such
a stability notion was also demonstrated to be more
suitable and desirable in practice under certain condi-
tions by examples [50]. One particular advantage of
practical stability is that it can describe not only the
qualitative behaviors of the system but also its quantita-
tive properties, including the transient behavior and the
trajectory bounds, making such a stability notion useful
in many situations [61]-[54]. Many further developments
have also been realized. These include mean-square
practical stability for stochastic large-scale dynamical
systems [b65], practical stability in probability for
regime-switching diffusions [56], practical stability in
the pth mean and practical stability in probability for
hybrid parabolic systems with Markovian regime
switching [567], and the practical controllability and opti-
mal practical control for MJSs with time-delays [58], to
name a few.

Take the following time-delayed MJS as an exam-
ple [58]

dx(®=f(x®),x - x®),t,r@®))dt+ gx (),
X(t - x(),t,r @) dw(t),t =0, (1D)

where {X(i):-2 #i# Q=p ! C&([- 2n, 0 R"),x(t):
R. —[0, n] is a Borel measurable function and »(t), f(),
g(), w(t) are defined in (2).



Definition 4: Practical Stability for MJSs
The system in (11) is said to be practically stable in probability
(PSIiP), if 66> 0, there exits A with 0< A< p, making that
P{la(t,t,8)]=0}<6,6 t=t—p, (12)
which holds for some ¢, €R. and 6& with E|&|<A.
Moreover, the notion of uniformly PSiP can be defined
similarly if the characteristic of PSiP is uniform for all
toeR.. The proof of the relevant stability criteria usually
takes advantage of the comparison principle, which is
judged by the property of a deterministic system; see[58]
for more details.

Finite-Time Stability

Nonsmooth control can lead to high tracking precision,
fast response and disturbance rejection, and the ability to
reach the target in finite time [59]D[64] Such a notion has
also been applied to MJSY65]D[67].

The finite-time globally asymptotically stability is con -
sidered in [68]. For the system in (6), define the stochastic
settling time function as To(%o, to, 7o, w) =inf{T =t,: x(t) =
x(t, 20,L0,70)=0,6t=T}.

Definition 5: Finite-Time Stability for MJSs

Equilibrium point 0 of the system in (6) is finite-time glob -
ally asymptotically stable in probability (FGSP). If 6&>0
there exists a class GK L function A(-,-) such that

Plla®)|<B(xol,t— 1)) =1—¢,61> 1,6 xzo€R"\{0)  (13)

and the stochastic settling time function 7, <+oo, a.s.

Theorem 3: Finite-Time Stability Criteria for MJSs

The system in (6) is FGSP if there exists a Lyapunov fune
tion Ve C*(R" X [ty, ) X S, R.), class K. functions

a;,a;(i1=1,..., N) such that for some ¢;>0,0<a,;<1,

and 6x €R", t>1t, such that

a:(lxD=V(x,t,)<a:(x|) (14a)

LV, 1,30 < —c. V" (2,1, 5). (14b)

Control of MIJSs

We introduce several control approaches to MJSs as well
as their recent advancements, including state feedback
control, optimal control, and sampled-data control.

Readers can refer to[28], which includes a review where

H, and H. performance analysis, filtering, feedback
control, and sliding mode control are covered. Also con-

sult [69]D[76] for the stabilization of MJSs, [20] for lin -

ear quadratic control theory of MJSs, [77] and [78] for

the H. control theory of MJSs, [79]D[82]for the H. con-

trol theory of MJSs, and [83]P[85] for the H.. filtering

theory of MJSs.

A State Feedback Control

Consider the following Markovian jump linear control sys -

tem where 7, is Markovian:
&)= A(r)x )+ B@r)u(l). (15)
The state feedback control problem is to find a proper
controller gain K (7)) to ensure the closed-loop stability
where the following form of controller is implemented [20]:
w(®)=K@)x(t). (16)
Parameter disturbance or model uncertainties may also
be considered, resulting in the robust stabilization prob-
lem. For the stabilization or robust stabilization of MJSs,
the Lyapunov function method combined with linear

matrix inequalities are often the effective tools; refer to
[69]D[76]for more details.

Optimal Control

Optimal control has also been investigated extensively for
MJSs, including, e.g., quadratic control, H. control, and
H.. control.

Problem 1: Jump Linear Quadratic Optimal Control Problerf20]
The jump linear quadratic optimal control problem for the
system in (15) is to minimize

J(t(’) x(to), T(t”)) T) u)

=E { f (2" (D) QUr() () +u' (O R(r (D) u®)]dt| x(t), 7”(to)}

to

over form-dependent control laws ¢ € ¥

u®)=w(t,x),r (), ¥:[t, TIXR"XS" R", a7)

where for some constantk (depending on )
Q/I(t,x, r)' ]r/l(t7 xlar) # K<x- X’Kl/l(t,)(;r) #k(1+ X 3:

for all t,x,%,r,R and Q are real valued symmetric matri-
ces with R(r(t))>0 and Q(r(t))=0. T may be finite
or infinite .

The discrete-time counterpart of the aforementioned
problem can also be defined[86], [87]. Other problems,
such as the constrained quadratic control of discrete-time
linear MJSs[78], finite horizon quadratic optimal control
problem, and the separation principle for linear MJSs [88]
have also been considered.

To introduce the H. control theory for MJSs, we first
give the following Markovian jump control system with
disturbance input:

X®O=Ar @O +BrE)u®)+G(r)w®)
ZO=CrOXx®O+DrE)Hu®,

(18a)

(18b)
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where r(t) is a Markov process defined as in (2); x(t),
u(t), w(t), and z(t) are the system state; the control input
satisfying (17); the disturbance input in 1,[0,3); and the
controlled outputin 1,[0,3).

Problem 2: H; Control for MJSs [80]

The Hs control for the system in (18) is to design a con
troller as in (17), such that for all nonzero w(t)! 1,0,3) it
holds that

<(t) &1 cw(t) =, (19)

where

2

<(1) £=E) #zT(t)z(t) dt3

and c2 0 is a prescribed level of disturbance attenua
tion. The system in (18) with the controller in (17) is said
to have H; performance (19) over the horizon [0, T] if
(29) holds.

H: control theory has been intensively investigated
[79]1D[82]. For example, the H;
controller for MJSs was designed
for unknown nonlinearities in
[80], bounded transition probabili -
ties in [81], and uncertainties and
time delay in [79], respectively.
Delay-dependent H: control has
also been studied for MJSs with
time-varying delays [5], [82], [89].
In [90] and [91], finite-time H,
fuzzy control of nonlinear delayed
MJSs with partly uncertain tran-
sition descriptions was discussed
for discrete-time and continuous-
time cases, respectively. H;
control for fuzzy MJSs under dif-
ferent conditions can be found in [92] and [93]. For 2D
continuously delayed MJSs with partially unknown tran-
sition probabilities, H: control [94] and the robust H.
filtering problem have also been considered. For exam
ple, in [69], a mode-independent filter was designed for
MJSs with H; performance. For more results, refer to
[95]D[97]

Besides H: performance, H. performance [98], [99]
and L.- Ls (energy-to-peak) performance[100], [101] are
also important indices and have been investigated exten
sively. Due to page limitations, we do not introduce them
in this article.

Sampled-Data Control
Consider the following MJS:
©=(A(r(0) + AA(r (1) x(2) + B(r(1)) u(l)

y(t) =C(r(t))x(t), x(t)=xXo r(to=ro

(20a)
(20b)
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The proof of the
relevant stability
criteria usually takes
advantage of the

comparison principle,
which is judged by
the property of a
deterministic system.

where AA(r(t)) is the uncertain matrix with specified
structure.
The sampled-data controller has the form

ut) = F(r(ty)y(ty, t! [tetes), k=0,1f . (21)
Consequently, the closed-loop system has the form
() = (A +AA) x(t) + BiF Cix(t), (22)

where C; is the specified C(r(ty)) with r(ty)=j. The
closed-loop system described above is hybrid, in the
sense that it consists of a continuous-time state x(t), a
discrete-time control action F;y(t), and a discrete-state
Markov process.

Sampled-data control for MJSs has yielded fruitful
results. To name a few, they include a dissipative-based
adaptive reliable controller that was designed for
systems subject to time delay, actuator failures, and
time-varying bounded sampling intervals [102]; event-
triggered reliable control for MJSs that are subject to
nonuniform sampled data [103]; optimal sampled-data
state feedback controller for con-
tinuous-time linear MJSs that
was designed for H, and Hs;
performances [104]P[106]; sam-
pled-data Hs filtering for singu -
larly perturbed MJSs that were
considered where time-varying
delay and missing measurements
were taken into account [107];
sampled-data control that was
studied in the passivity-based
robust framework for continu -
ous-time MJSs[108]; and sam
pled-data control that was
investigated in the passivity-
based resilient control frame-
work and adaptive fault-tolerant mechanism for MJSs
subject to actuator faults in [109].

Conclusion

We provided a brief tutorial and survey on the stability
analysis and control approaches for MJSs, which are of
both theoretical and practical importance. This articleOs
organization is unique, in that it contains both fundamen-
tal concepts for beginners and state-of-the-art research
progress for experts.

MJSs should and will receive more attention in the
future as advanced control techniques, wireless communi
cations, and embedded computational units converge.
These developments in multiple fields, and especially their
convergence, naturally yield complex systems that contain
both dynamic states and discrete events, thus leading to
MJS models. In this sense, the study of MJSs will be of
great help to further develop many intelligent systems



such as intelligent transportation systems, the Internet of

Things, and smart factory. More work is needed to address
all of the new challenges for MJSs as we move toward the
Industry 4.0 era.
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