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Abstract— We consider a wireless control architecture with
multiple control systems communicating over two shared col-
lision channels. Each sensor accesses the channel randomly
and a scheduler at the controller side decides which controller
is permitted to access the channel. We design a packet-based
model predictive controller and obtain the packet transmission
success probability demands of stability. The channel-aware
transmission strategy of each sensor is studied in the non-
cooperative game theory framework. We also characterize the
Nash equilibrium and design a decentralized channel access
mechanism to achieve the Nash equilibrium. The effectiveness
of our results is demonstrated by a numerical simulation.

I. INTRODUCTION

Wireless control systems (WCS) are a kind of feedback
control systems where the information transmitted between
the sensors, controllers and actuators via wireless channels.
The architecture of WCS has advantages in terms of low cost,
fast deployment and increased flexibility, etc. However, the
introduction of the wireless medium may lead to some new
challenges because wireless medium is inherently unreliable.
For example, the wireless channels are frequently subject
to time-varying fading and interference, which may result
in packet losses [1]. Since the wireless medium is shared,
multiple control loops access the channel simultaneously will
cause packet collision. In these scenarios, the scheduling is
indispensable in accessing the channel and the compensation
for information loss is important in control, especially for the
scarce communication resource, see e.g. [2], [3], [4].

According to the architecture of the WCS, the scheduling
mechanism can be either centralized or decentralized [4].
For centralized scheduling mechanism, there usually exists
a central scheduler to decide which device can access the
wireless channel or whether to transmit the information or
not at each time slot. The decision may be deterministic
[5], random[6], state-based [2], [7] or channel-aware [8]. In
general, the social optimal can be achieved and the resource
utilization can be maximized by the centralized schedul-
ing mechanism. In contrast to the centralized scheduling
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Fig. 1. Architecture of wireless control systems with multiple systems

mechanism that requires the coordination among devices
or communication between scheduler and devices, we are
interested in the decentralized scheduling mechanism which
allows each device to make decision independently. This
mechanism commonly results in efficiency loss [9]. For
example, for the channel access problem studied in this
paper, the decentralized mechanism will inevitably cause
the packet collision and deteriorate the control performance.
Our goal is to design the scheduling strategy and packet
loss compensation mechanism to guarantee the stability of
each system. The research for this topic has not been fully
investigated and the existing literatures mainly focus on
the access mechanism, such as ALOHA-like scheme [10]
and random access [11], [12]. In all the related works, the
packet loss arisen from the scheduling strategy has not been
compensated, which will in turn bring the conservatism in
designing a scheduling strategy.

Inspired by the above works, a channel-aware decentral-
ized access strategy for each sensor, a centralized selection
strategy for scheduler, and a packet-based model predictive
controller (MPC) that used to actively compensate the packet
losses incurred by the scheduling and other interference,
are designed to minimize the average transmission power
while guaranteeing the stability. The architecture of the WCS
with multiple systems is illustrated in Fig.1. Based on the
designed packet-based MPC, we analyze the stability of the
closed-loop system and explore the two channels’ packet
transmission success probabilities requirements of stability.
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We design the access strategy for each sensor in the non-
cooperative game theory framework, and also design the
centralized controller selection strategy for the scheduler. A
decentralized channel access mechanism based on the better-
response dynamic is applied to achieve the Nash equilibrium.

The rest of the paper is organized as follows. The archi-
tecture of the WCS is introduced in Section II. The control
strategy with the stability analysis, the access strategy for
sensor and selection strategy for scheduler are studied in
Section III and Section IV. In Section V, a decentralized
channel access mechanism is designed. A numerical example
is shown in Section VI to illustrate the effectiveness of our
results. Finally, Section VII concludes the paper.

Notations. Throughout this paper, Rn represents the n-
dimensional Euclidean space. 0n and In stand for the n×n-
dimensional zero matrix and identity matrix, respectively.
For a vector x, xT represents the transpose of x and ‖x‖
means the Euclidean norm of x. Sequence {z(k)}∞0 repre-
sents {z(0), z(1), . . . }. We use E to denote mathematical
expectation.

II. PROBLEM DESCRIPTION

Consider a control architecture, see in Fig.1, where n in-
dependent plants are controlled over two shared wireless col-
lision channels named sensor-controller channel (channel 1)
and controller-actuator channel (channel 2), respectively. For
the collision channel, a state/control packet transmission can
be successful only if no other sensors/controllers attempt to
access the channel simultaneously. Therefore, the scheduling
for the sensors and controllers are necessary when access the
channels. Suppose that all sensors are spatially distributed,
and the communication among all sensors are expensive. We
thus consider the decentralized architecture, i.e., each sensor
measures the states and independently decides whether to
transmit or not. In contrast, all controllers are assumed to be
located at one place, which makes it possible to implement
a central scheduler to choose a controller to access the
channel when more than one controller have transmission
requirements. By this mean, the packet collision over channel
2 is avoided. Note that the controller may still compute
the new control input even the new state information is not
received. Once controller computes the control signal, it has
the transmission requirement.

Each plant i is modelled as the following nonlinear system:

xi(k + 1) = fi(xi(k), ui(k), wi(k)), i = 1, 2, . . . , n (1)

where f(0, 0, 0) = 0, xi(k) ∈ Rni and ui(k) ∈ U ⊂ Rri are
the state and control input of plant i, respectively. wi(k) is
the uncertain disturbance that belongs to a compact set W ⊂
Rmi . Suppose that 0 ∈W, d = |W| , maxw∈W(‖w‖) <∞.

Suppose that each sensor is battery-powered, it transmits
information to controller with fixed power level. Our goal
is to design the access strategy for each sensor, the central
scheduler and the controller to minimize the energy con-
sumption of each sensor while keeping each system stable.

In the following, we give a detailed description of the
shared wireless channel model.

Channel State Information The channel state information
(CSI) reflects the current channel condition and is crucial
for achieving reliable communication. To take the channel
1 for example, we describe the characteristics of the shared
channel in detail. At the beginning of each time slot k, every
system i obtains a channel state information (CSI) zi(k) ∈
Hi of channel 1, which is the channel fading coefficient of
the channel. Hi ∈ R is a finite set of possible values of
CSI and its elements are denoted by {hi1, hi2, . . . , himi

}
with hi1 < hi2 < · · · < himi

. Note that although the
CSI takes continuous value in practice, in this paper, the
possible value are restricted to Hi for easily analyzing.
The set Hi can be obtained by discretization method or
some reasonable classifications [13]. As pointed in [14],
zi(k) changes unpredictably over time due to the propagation
effect. The block fading model, where zi(k) keeps constant
during each transmission slot k but is independent and
identically distributed across different time slots, is adopted
to model the CSI [14].

Assumption 1: (i) The probability of observing a CSI sig-
nal z ∈ Hi during any time slot is denoted by Oi(z) > 0. (ii)
The sequences {zi(k)}∞k=0 and {zj(k)}∞k=0 are independent
for i 6= j.

Successful Decoding Probability We assume that each
plant i transmit information to the remote controller with a
fixed power level ξi, and the information is transmitted over
i.i.d. block fading additive white Gaussian noise channels
(AWGN). As shown in [15], if the noise power is Wi, the
channel state is zi and the transmission power is ξi, then
the successful decoding probability of the transmitted packet
depends on the signal to noise ratio (SNR), which is defined
as SNRi = ziξi

Wi
. The specific relation depends on the partic-

ular modulation and error correction code (e.g. forward error
correcting (FEC) code). The successful decoding probability
is denoted by P (zi) = P(zi, ξi), where P(.) is an increasing
function of ziξi. An illustration of this relation can be seen
in Fig.2 in [8]. It is difficult to give the analytical expression
of P(hi, ξi), but the value can be measured in actual or
simulation experiments [16].

III. CONTROL STRATEGY AND STABILITY

A. Packet-Based MPC

As stated above, there exists information loss in the above
control architecture. For example, the current system state
and control input may not received by the corresponding
controller and actuator. The information loss is partly caused
by the access strategy, packet collision and channel noise.
In order to actively compensate the loss, a packet-based
model predictive control method is adopted in this paper. As
illustrated in Fig.2, the implementation of the packet-based
MPC contains two essential components: the smart controller
and the smart actuator. Due to the space limitation, we only
give a brief description.

Smart Controller The smart controller of plant i consists
three parts: a MPC, a state estimator and a buffer stores the
control sequence.

811



MPC

Channnel 1Channnel 2

Buffer 1

Estimator

ACK

Plant i
Buffer 2

Actuator Sensor i
Smart Controller iSmart Actuator i

Fig. 2. The control architecture of packet-based MPC

(a) The buffer at the controller side is used to store
the received control sequence of the actuator. This can be
realized by the acknowledgement signal if the TCP-like
protocol is applied. Let bi(k) denote the content of the buffer
at time k and bi(0) = 0, then we have

bi(k) = dai(k)Sbi(k − 1) + (1− dai(k))ui(k)

ui(k) = eT1 bi(k)
(2)

where dai(k) = 1 means the control sequence is received by
the actuator of plant i, and dai(k) = 0 otherwise. ui(k) is
the control sequence and ui(k) is the actual control input. S
and e1 are defined via:

S ,


0p Ip 0p . . . 0p
...

. . . . . . . . .
...

0p . . . 0p Ip 0p
0p . . . . . . 0p Ip
0p . . . . . . . . . 0p

 , e1 ,


Ip
0p
...

0p


(b) The estimator estimates the current state of the plant

according to whether the plant state is received. Specifically,

x̂i(k) =

{
xi(k) if transmitted successfully
x̃i(k) otherwise

(3)

where x̃i(k) = fi(x̂i(k − 1), ui(k − 1), 0) and ui(k − 1) is
defined in (2).

(c) The function of MPC is to calculate the control
sequence ui(k) at each time slot by solving a constrained
optimization problem formulated as follows

min
ui(k)

Ji(x̂i(k),ui(k))

s.t. x̂i,j+1(k) = fi(x̂i,j(k), ui,j(k), 0)

x̂i,0(k) = x̂i(k)

ui,j(k) ∈ Ui, ∀i = 1, . . . , n, j = 0, . . . , N − 1.

(4)

where x̂i(k) is the estimated state of system i, N
is the prediction horizon that need to be design, and
MPC cost function of system i is Ji(x̂i(k),ui(k)) =∑N−1
j=0 li(x̂i,j(k), ui,j(k))+Fi(x̂i,N (k)) with li(.) and Fi(.)

being the stage cost and the terminal cost.
Smart Actuator The smart actuator is composed of an

actuator and a buffer which is also used to store the received

control sequence and provide the control signal to actuator.
The control input ui(k) provided by the buffer is defined
also in (2).

B. Stability Analysis

First we give some necessary assumptions and then, based
on which, the relationship between the stability and the
packet transmission success probabilities are derived. Let
qs and qc denote packet transmission success probability
of sensor and controller, respectively. The stability results
hold for any system i (i = 1, 2, . . . , n) under the following
assumptions, so the subscript i is omitted for simplicity.

Assumption 2: [17] There exist constants λx, λw, λl, λf
and positive integer s such that for all x, y, u, w,

‖f(x, u, w)− f(y, u, 0)‖s ≤ λx‖x− y‖s + λwd
s

|l(x, u)− l(y, u)| ≤ λl‖x− y‖s

|F (x)− F (y)| ≤ λF ‖x− y‖s
(5)

Assumption 3: [17] The stage cost l(.) and terminal cost
F (.) satisfy, for all x, u,

l(x, u) ≥ αl‖x‖s

F (x) ≥ αF ‖x‖s
(6)

where αl and αf are two positive constants.
Assumption 4: [17] There exists a constrained control law

κ : Rn → U such that

F (f(x, κ(x), 0)) + l(x, κ(x)) ≤ F (x) (7)

for all x ∈ Rn.
Assumption 5: [18] There exist constant γ that satisfies

(1−min{qs, qc})γ < 1, and η ≥ 0 such that

F (f(x, 0, w)) ≤ γF (x) + ηds (8)

for all x ∈ Rn and w ∈ Rm.
Similar to Lemma 5 in [17], the (8) is satisfied with γ =

λfλx/αf and η = λfλx if max{ps, pa}λfλx/αf < 1. Be-
sides, The above Assumption implies that Vf (f(x, 0, 0)) ≤
γVf (x) holds for the nominal open-loop system.

Lemma 1: [18] For any system, suppose that Assumptions
2 ∼ 5 hold, (1−qs)(1−qc)λx < 1, and the prediction horizon
N is chosen such that[ (1− qc)N+1qs

1− (1− qc)γ
− (1− qs)N+1qc

1− (1− qs)γ
] γ − 1

qs − qc
<

µ

1− µ
(9)

for qs 6= qc, and

Nqs(1− γ + qsγ) + (1− (1− qs)2γ)

(1− γ + qsγ)2/(γ − 1)(1− qs)N
<

µ

1− µ
(10)

for qs = qc, where µ , inf l(x)
F (x) , then there exist constants

c1, c2 and 0 < ρ < 1 such that, for all k ∈ N0

max
ε∈{tk,tk+1,...,tk+∆k−1}

E{‖x(ε)‖s}≤ c1(1−ρ)k‖x0‖s+c2d
s

where tk is the k-th time instant that the actuator receives
the control sequence, ∆k , tk+1 − tk.

The above lemma reveals the relationship between the sta-
bility (boundedness) and packet transmission success proba-
bilities. Given the prediction horizon N , qs and qc satisfies
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the revelent probability requirements, the access strategy for
each sensor and selection strategy for the central scheduler
can be designed.

IV. TRANSMISSION STRATEGY AND GAME
FORMULATION

In this part, the design objective for each system is
described and some revelent transmission strategies are ex-
plained. Due to the decentralized architecture, the problem
is formulated as a non-cooperative game. The definition of
Nash equilibrium is then introduced.

A. The Objective of System

As indicated in the previous subsection, the requirements
of the packet transmission success probabilities should be
satisfied to guarantee the stability of the system. So the
objective of each system can be stated as to minimize the
average transmission power while meeting the requirements
of the packet transmission success probabilities. Since qs and
qc are correlated in these requirements and the co-design of
which may be intractable, we have to design them separately.

Channel-aware Access Strategy for Sensor The access
strategy may be random, i.e. the sensor accesses the channel
with some positive probability. Let πi denotes the access
strategy of system i, then πi decides whether to transmit
or not during current time slot according to the available
information, such as current CSI signal and possibly the
access history. Let multi-strategy π = (π1, π2, . . . , πn)
represent the set of strategies of all systems and π−i =
(π1, π2, . . . , πi−1, πi+1, . . . , πn) represents the set of strate-
gies of all systems, except system i. For each system i,
psi(π) denotes the access probability of the sensor, which
depends not only on system’s own strategy πi but also the
strategies of other systems π−i, and qsi(π) is the packet
transmission success probability. Therefore, for each system
i, the objective is

min
πi

psi(πi,π−i)

s.t. qsi(πi,π−i) ≥ q̄si

where q̄si is the packet transmission success probability
requirement satisfying (1− q̄si)γ < 1.

Due to the decentralized architecture where each system
is self-optimizing, i.e. each system makes their own decision
to fulfill its objective without using information of other sys-
tems. Despite of this, the decision can affect the performance
of other systems through the collision channel, because the
packet collision occurs if more than one systems transmit
during the same time slot. So we adopt the non-cooperative
game to analyze this behavior. In the following, we give the
definition of Nash Equilibrium Point (NEP), where none of
the systems can lower its access probability by unilaterally
modifying its strategy πi.

Definition 1: A multi-strategy π = (π1, π2, . . . , πn) is a
Nash Equilibrium Point if

πi ∈ arg min
π̂i

{psi(π̂i,π−i) : qsi(π̂i,π−i) ≥ q̄si}

In our problem setup, the decision whether to access the
channel or not during one time slot only depend on the
current CSI signal. Intuitively, it is low cost policy to increase
the access probability when a better CSI signal is obtained.
Therefore, in the following, we focus on the stationary access
strategy and threshold strategy.

Definition 2: A stationary strategy is a mapping πi :
Hi → [0, 1]. Specifically, the explicit expression of a sta-
tionary strategy can be denoted by an mi-dimensional vector
Si = [si1, si2, . . . , simi

] ∈ [0, 1]mi , where sij is the access
probability of system i when the channel condition is hij .

Definition 3: A threshold strategy is a special class of
stationary strategy where Si = [0, 0, . . . , siri , 1, . . . , 1] with
siri ∈ [0, 1].

For a threshold strategy, there exists some threshold hiri ,
above which system i always transmit, below which it never
transmit, and equal to which it transmit with probability siri .
From [13], [19], we can conclude that in our problem, an
optimal stationary strategy is always a threshold strategy.
Further, there exists one-to-one relationship between the
access strategy and the access probability, i.e., given the
access probability psi, the threshold strategy is determined
and vice versa. Then, the CSI threshold and its corresponding
transmission probability can be denoted by hiri(psi) and

siri(psi), where siri(psi) =
psi−

∑mi
r=ri+1 O(hir)

Oi(hiri
) .

For sensor i, define the following function

Hi(psi) =sirj (psi)O(hiri(psi))P (hiri(psi))

+

mi∑
r=ri+1

O(hir)P (hir) (11)

This function is the packet transmission success probability
of sensor i in the collision-free environment under the
threshold strategy with access probability psi. Therefore, the
packet transmission success probability of sensor i is

qsi(psi,ps,−i) = Hi(psi)
∏
j 6=i

(1− psj) (12)

Selection Strategy for Central Scheduler Suppose that the
selection strategy is also random, i.e., the scheduler randomly
choose a controller to access the channel during each time
slot based on the given positive probability. For example, the
probability of choosing controller i to access channel 2 is

pci =
q̄si∑n
j=1 q̄sj

, (13)

and then the packet transmission success probability qci is

qci =
q̄si
∑
zi∈Hi

O(zi)P (zi)∑n
j=1 q̄sj

(14)

The probability requirement of the controller can be sat-
isfied as long as

∑
zi∈Hi

O(zi)P (zi) ≥
∑n
j=1 q̄sj . Actually,

based on (14) and the fact that (1− q̄si)γi < 1 , we have

(1− qci)γi < 1 + q̄siγi − q̄siγi
∑
zi∈Hi

O(zi)P (zi)∑n
j=1 q̄sj

< 1.
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V. EQUILIBRIUM ANALYSIS AND ALGORITHM DESIGN

In this section, the existence and the characteristics of NEP
are analyzed, and a decentralized channel access mechanism
is designed for each sensor to achieve the NEP.

A. The Existence of Equilibrium Point

Lemma 2: The function Hi(psi) is a continuous, strictly
increasing and concave function with Hi(0) = 0.

Proof: From (11), it can be easily seen that Hi(psi)
is a piecewise-linear increasing function. The concavity is
verified from the fact that the slope of Hi depends on
P (hiri(psi)), and which decreases with hiri(psi) or psi.
psi = 0 means no transmission, thus the transmission success
probability is also 0

Multi-strategy ps = (ps1, ps2, . . . , psn) is a probability
representation of multi-strategy π = (π1, π2, . . . , πn), then
we have the following result about the NEP.

Theorem 1: A multi-strategy ps is an NEP if and only if
it solves a set of equations

Hi(psi)
∏
j 6=i

(1− psj) = q̄si (15)

Proof: According to Definition 1, an NEP should satisfy

psi = min{psi : qsi(psi,ps,−i) ≥ q̄si}

where qsi(psi,ps,−i) is an increasing function of psi. So
the solution of the above minimization problem is also the
solution of the equations (15).

Remark 1: The above theorem shows that the NEP also
solves a set of equations named equilibrium equations.
Further, this theorem is also a existence result of the NEP.
That is, there exist an NEP (may be two NEPs) if and only
if the equilibrium equations are feasible. As shown in [13],
by dividing the requirement spaces of q̄s ∈ [0, 1]n into two
part: Ω and Ω̄, where the equilibrium equations are always
feasible in Ω, and otherwise in Ω̄. There are two NEPs (one
is strictly better than the other) for all q̄s in the interior of
Ω, one in the upper boundary of Ω and none in Ω̄.

B. Channel Access Mechanism

In this part, we adopt a decentralized channel access
mechanism based on the naive best-response dynamic that
first proposed in [20] to adjust the access probability, then
explain how the access probabilities converge to an NEP.

According to the equilibrium equations (15), the best
response can be written as follows:

psi(k + 1) = H−1
i

(
q̄si∏

j 6=i(1− psj(k))

)
(16)

where H−1
i is the inverse function of the collision-free

packet transmission success probability function. Although
this inverse function always exist (Lemma 2), to obtain the
explicit expression is intractable. Instead, we adopt the naive
best-response (better response) here. In contrast to the best-
response dynamic which is usually the optimal strategy of a
user by giving the set of strategies of others, the main idea of
the naive best-response (better response) is to find a strategy

(not necessarily the optimal ones) that has performance
improved. Here, we update the transmission probability in
proportion to the required increase of the packet transmission
success probability. That is,

psi(k + 1) =
q̄si

qsi(psi(k),ps,−i(k))
psi(k) (17)

Suppose that all users (sensors) update their access strate-
gies repeatedly and qsi(psi,ps,−i) can be perfectly estimated
before each update. If all users start with low initial access
probabilities and the equilibrium equations (15) are feasible,
then it can be verified that with the above update policy, the
multi-strategy ps is increased monotonically, i.e. ps(0) <
ps(1) < · · · < ps(k) < . . . and finally converge to the better
NEP. The proofs of this conclusion follow similar lines in
[20]. For the sake of brevity, the proofs are omitted.

Remark 2: For a practical implementation of the channel
access mechanism (17), the packet transmission success
probability qsi(psi,ps,−i) is needed but unknown to sensor
i. Thanks to the adopted TCP-like protocol, an approach to
measure this probability is by monitoring the channel for
some time slots, and counting the number of transmissions
and successful transmissions by using acknowledgement
signal sent from the controller. Note that the access strategies
of other systems are not required when one sensor updates
its transmission strategy. So the channel access mechanism
can be implemented in decentralized manner.

VI. NUMERICAL SIMULATIONS

Consider the following three open-loop unstable systems:

xi(k + 1) = xi(k) + ai sin(xi(k)/5) + ui(k) + wi (18)

where wi ∈ [−0.1, 0.1], i = 1, 2, 3 and a1 = 0.25, a2 = 0.6,
a3 = 0.4. Suppose that the control input has the constraint
−1 ≤ ui ≤ 1. The initial states x1(0) = 10, x2(0) = 10 and
x3(1200) = −10 with accessing time instants 0, 0 and 1200,
respectively. The stage cost function and the terminal cost
function are chosen as li(x) = ‖x‖ and Fi(x) = 2‖x‖, thus
Assumption 2 and 3 can be satisfied with αFi = λFi = 2,
λwi = λli = αli = s = 1 and λxi = 1 + ai/5.
Assumption 5 holds with γi = 1 + ai/5 and ηi = 1.
The Assumption 4 is satisfied with the terminal controller
κi(x) = −ai sin(x/5) − 0.05x. For the channel model, we
assume that the CSI is classified by H1 = H2 = H3 =
{0.5, 1.5, 2.0, 2.5} with the probability distribution Oi(h) =
[0.05, 0.2, 0.65, 0.1] and transmission power of each sensor
is ξi = 20mW . If a specific error-correcting code is ap-
plied, the successful decoding probability is nearly Pi(h) =
[0.1, 0.9, 0.96, 0.99]. We have

∑4
j=1Oi(hj)Pi(hj) = 0.902.

By letting N1 = 16, N2 = N3 = 14, q̄s1 = 0.07, q̄s2 =
0.14, q̄s3 = 0.10 and adopting the selection strategy (13),
the probability requirements of stability are satisfied. The
channel access mechanism (17) with initial transmission
probabilities ps1(0) = ps2(0) = ps3(1200) = 0.05 is
performed every 100 time slots. The packet-based MPC
is applied, then the state responses of these systems are
shown in Fig.3. Fig.4 shows the access probability evolutions
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Fig. 3. State responses of all closed-loop systems
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Fig. 4. Update of access probability of each sensor

of each sensor. We observe that the access probabilities
converge to the NPE fast. Before the third system accessing
the channel, the access probabilities of two systems converge
to an equilibrium with ps1 = 0.0838, ps2 = 0.1560, and the
corresponding threshold strategies are s1 = [0, 0, 0, 0.8380]
and s2 = [0, 0, 0.0862, 1]. After the introduction of the new
system, the access probabilities update and converge to a
new equilibrium ps = [0.1008, 0.1853, 0.1391] with the cor-
responding threshold strategies s1 = [0, 0, 0.0012, 1], s2 =
[0, 0, 0.1312, 1], s3 = [0, 0, 0.0602, 1], respectively.

VII. CONCLUSION

In this paper, we have considered the scheduling and con-
trol for WCS with multiple systems communicating over a
shared collision channel. The packet-based model predictive
controller, the channel-aware access strategies for sensors
and the selection strategy for scheduler have been designed.
The characteristics of the NPE has been analyzed by using
the non-cooperative game theory, and a decentralized channel
access mechanism is designed to achieve the NPE. However,
the selection strategy of the scheduler ignores the CSI
and is too simple, so a more-refined strategy need to be
further investigated. Future research also includes the study
of the multi-channel case [8], [19] and the state-based access
strategy [21].
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