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Research on the brain functional network is important in understanding the normal function of the brain
and diagnosing neuropsychiatric diseases. Inspired by the brain functional network, we constructed a
cortical–muscular functional network using electroencephalography and electromyography to explore
the motion control mechanism of the central nervous system and understand the organization and coor-
dination mechanisms of limb motion control. In the process of constructing the network, 12 signal acqui-
sition channels were selected as nodes, and the wavelet coherence is used as the index of connection
between network nodes. Based on the original network, we used a fixed weighted edge and threshold
methods to remove weak weighted edges and compare the performance of the two methods. The exper-
imental results showed that the constructed network had a higher clustering coefficient, and the smaller
characteristic path length indicated a small-world characteristic. At the same time, the weighted charac-
teristic path length and weighted clustering coefficient of the functional network simplified by the
threshold method can show promising classification accuracy under Fisher and artificial neural network.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The synchronization between Electroencephalography (EEG)
and surface electromyography (sEMG) signals in neural motor con-
trol can reflect the functional link between the cortex and the mus-
cle, and the EEG of the motor cortex and the sEMG of the
contralateral muscle can reflect, respectively, the motion control
information and the response of the muscle to the brain’s control
intention. It has thus become popular in the field of motor neuro-
science to study the coupling of cortex and muscle, and conse-
quently the relationship between the motion control and
response mechanism during exercise. Useful EEG signals are
mainly distributed in the 1–80 Hz range (delta: 1–3 Hz, theta: 4–
7 Hz, alpha: 8–13 Hz, beta: 14–30 Hz, gamma: 30–80 Hz), and
the range of magnitude is 5–200 mV. EEG is a reflection of the elec-
trical activity between brain tissues and the functional status of
various brain regions, and it is crucial in understanding the infor-
mation processing process of the brain. Useful sEMG signals are
mainly distributed in the 10–500 Hz range, and the range of mag-
nitude is 100–5000 mV. As a resource of the human body, sEMG sig-
nals contain rich information on human movement and are ideal
control signals for artificial limbs and functional nerve electrical
stimulation [1,2]. EEG is widely used in neurological diseases,
[3,4] brain-machine interface, [5–7] and motor imagery, and sEMG
is utilized in rehabilitation training, [8,9] medical sensing, [10]
mechanical control, [11,12] and many other fields.

In the process of human autonomous movement, synergy
occurs between different regions of the brain. In accordance with
that, researchers have proposed the brain function networks based
on this characteristic. In the past 20 years, after introducing the
small-world features of most real networks [13] and the scale-
free features of large-scale networks, [14] brain functional net-
works have developed rapidly. At present, brain function networks
have been widely used in the brain sciences to study different
brain functions or dysfunctions [15–18]. In addition to the brain
regions, people found that the motor cortex, brain somatosensory
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cortex and motor muscle tissue nerve cells automatically synchro-
nize [19,20]. The coherence between cortical and muscle activities
varies with the function of cortical involvement in different tasks.
The coherence between EEG and sEMG in the beta frequency band
(13–30 Hz) is pronounced during visuomotor tasks [21–23] and
low during automatic postural functions [24]. The coherence
between EEG and sEMG in the gamma frequency band (30–
45 Hz) is pronounced during dynamic [23] and intense contrac-
tions [25]. The interaction between the cortex, motor nerves and
muscle tissue is called cortical-muscle functional coupling (CMC).
In recent years, more and more researchers have conducted
research on CMC. Mima and Hallett described the CMC mechanism
and extracted coherence between EEG and sEMG produced by the
right abductor pollicis brevis muscle [26–28]. Chen et al. [29] pro-
posed a time–frequency transfer entropy algorithm based on har-
monic wavelet transform and symbol phase transfer entropy,
revealing that the cortical muscle motor system controls muscle
strength by regulating the synchronous oscillation of neurons.
Bao et al. [28] studied the possibility of High-Definition Transcra-
nial Direct Current Stimulation (hd-tdcs) combined with EEG and
found that the anode hd-tdcs caused significant changes in CMC
in stroke patients while the cathode and sham stimulation did
not. The research studies on CMC mainly adopt methods such as
coherence analysis, phase synchronization index, generalized syn-
chronization index, Granger causality measure, information theory
measure and so on. Among them, coherence analysis is one of the
most widely used methods. Coherence estimation is a measure of
the functional connectivity between different sources of neuro-
oscillatory activity through the correlation degree between sites
(e.g., cortical and muscle) in the frequency domain [20,30–35].
The wavelet coherence (WC) method has shown good results in
studying the coupling of EEG and EMG signals [26,27]. Using WC
to analyze CMC can provide a theoretical basis for motion control,
feedback information decoding and clinical rehabilitation assess-
ment. This will help to explore the central nervous system move-
ment control mechanism and understand the organization’s
coordination mechanism in the process of limb movement control.

In this study, with the help of the brain function network and
the method of studying CMC, we started from the mechanism of
human movement and used WC as the connection between corti-
cal and muscle functions and constructed a brain-muscle function
network. The proposed functional network can display the charac-
teristics of the signal in the time domain and the frequency
domain, and has significant advantages and potential in decoding
human motion intentions. We calculated the weighted edges of
the function networks by studying CMC and preliminarily selected
the WC value as the cortical–muscular functional connectivity. The
threshold method (THR) and fixed weighted edge method (FWE)
were used to delete weak weighted edges. Then, we checked if
the cortical–muscular functional network had small-world charac-
teristics. Applying this network to the motion recognition, the
experimental results showed that the network is effective indicat-
ing substantial significance for exploring the motion control mech-
anism of the central nervous system and understanding the
organization and coordination mechanism of limb motion control.

The remainder of this paper is organized as follows. Section 2
presents the proposed network in detail. Section 3 discusses the
experimental results. Section 4 provides the conclusions.
Fig. 1. Data acquisition experiment.
2. Materials and methods

2.1. Subjects

We recruited seven healthy male and seven healthy female par-
ticipants who were right-handed. The age of the participants ran-
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ged from 22 to 25, and their body mass index was from 19.0 to
22.6. The subjects had no neurological history, were informed of
the details of the experiment, and signed an informed consent
form. Before the experiment, the participants were required to sat-
isfy the following: (1) they lead a regular life routine, (2) they do
not stay up late, (3) they did not take alcoholic drinks or drugs a
week before the experiment, (4) they did not smoke or drink coffee
or strong tea eight hours before the experiment, and (5) they
washed their hair two hours before the experiment. The entire pro-
cess followed relevant ethical standards.

2.2. Acquisition and processing of EEG and sEMG data

EEG data were recorded by a digital EEG apparatus (g.MOBllab +
MP-2015) at the following eight positions of the 10–20 systems:
C1, C2, C3, C4, C5, FC1, FC3, and CP1 (Fpz was selected as the
grounding electrode). Considering that all the subjects were
right-handed, some of the electrodes only took in the left brain
region to build a much leaner function network. EMG signals were
recorded by TrignoTM Wireless EMG (Delsys Inc, Natick, MA, USA).
Bluetooth was used as the communication protocol, and motion
artifact suppression could be freely movable. The sampling fre-
quency of the sEMG signals was 1600 Hz using EMG Works 4.0
acquisition software (DelSys, Inc., Natick, MA, USA). The sEMG sig-
nals were recorded by four surface electrodes on the muscles of the
right upper limb (extensor digitorum, flexor carpi radialis, flexor
digitorum superficialis, and extensor carpi ulnaris). All data is
denoised by wavelet de-noising to remove noise, and EEG also
removes electrooculogram (EOG) via ICA algorithm.

Three gestures, namely, wrist flexion (WF), wrist extension
(WE) and clench fist (CF), were considered in the EEG and sEMG
data acquisition. We asked each subject to do each pose for 30 s
followed by one minute rest, and repeat for 20 times. In the end,
a total of 840 sets of data were collected, with artifacts being
removed through the toolbox. All the collected data are equipped
with the de-noising function of the acquisition tool to remove
noise interference. The experimental process is shown in Fig. 1.

2.3. Computation of WC

We constructed the cortical–muscular functional network on
the basis of the weights of the cortical–muscle functional connec-
tivity. WC was used as the weights of the cortical–muscle func-
tional connectivity and calculated as follows:

(1) The wavelet power (WP) is defined as CWT’s norm square of
signal x, i.e,

WPxðt; f Þ ¼ k CWTxðt; f Þ k2 ð1Þ
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where WP is a function of time t and wavelet center frequency f.
CWT stands for continuous wavelet transform.

(2) Cross-wavelet transform (XWT) between signals x and y is
defined as

XWTxyðt; f Þ ¼ CWTxðt; f Þ � CWT�
yðt; f Þ ð2Þ

(3) Similar to the estimation of conventional coherence, a
smoothing process was used to estimate WC following the
method of Lachaux et al,. [34] Grinsted et al,. [37–39] and
Torrence et al. [40]. The smoothing process depends on the
wavelet basis and scales. Smoothing operates across scale
and time axes, which increases the degree of freedom for
each point in CWT [33].

An appropriate smoothing function for WC application across
time axis Stime is defined as follows using the Morlet wavelet [39].

StimeðCWTxðt; f ÞÞ ¼ CWTxðt; f Þ ^ c
�k2
2

1 ð3Þ
where k ¼ t=a, c1 is a normalization constant, and ^ refers to the
convolution operator. The smoothing function across scale axis
Sscale is defined as that in, [36] i.e.,

SscaleðCWTxðt; f ÞÞ ¼ CWTxðt; f Þ ^ c2Pð0:6aÞ ð4Þ
where c2 is a normalization constant and

Q
is the rectangular func-

tion. ais the scale. In practice, the convolutions in Eqs. (3) and (4)
are calculated discretely, and the normalization coefficients are
determined numerically. The rectangular function’s width used in
Sscale is determined by the scale–decorrelation length, which elec-
trooculogram to 0.6 [26].

(4) WC is defined as follows by using the smoothing functions.

WCxyðt; f Þ ¼
Sða�1XWTxyðt; f ÞÞ
�� ��2

Sða�1WPxðt; f ÞÞSða�1WPyðt; f ÞÞ ð5Þ

where a�1 denotes the scale inverse, which is used to normalize the
XWT. Schwartz inequality ensures that WCxy 2 ½0;1�. The smoothing
process S is defined as follows:

SðwÞ ¼ Sscale½StimeðWÞ� ð6Þ
2.4. Cortical–muscular function network modeling

The algorithm of modeling the brain muscular functional net-
work involves the following steps.

(1) TheWC values between the two channels are calculated, and
the adjacency matrix is obtained.

(2) The adjacency matrix is divided into three parts, namely,
EEG-EEG, EMG-EMG, and EEG-EMG. The WC values of each
part are normalized, and a normalized adjacency matrix is
obtained.

(3) HR or FWE is employed to delete low weights in the adja-
cency matrix.

We modeled the cortical–muscular function network by imple-
menting steps (1) to (3) with MATLAB programs. Step (1) aims to
calculate the cortical–muscle functional connectivity of every
two vertices as the weighted edges. Step (2) standardizes the
weighted values because of the connectivity of different kinds of
signal differs. Step (3) simplifies the model and highlights the
graph characteristics. The brain functional network demonstrates
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the functional connectivity between different brain areas. We
added sEMG signals to the model to construct the proposed model,
namely, the cortical–muscular function network.

2.5. Computation of network characteristics

In complex network theory, a clustering coefficient is a measure
of the degree to which nodes in a network tend to cluster together.
Clustering coefficient C is defined as follows [41]:

C ¼ 1
N

XN
i¼1

Ci ð7Þ

Ci ¼ 2Ei

KiðKi � 1Þ ð8Þ

where N is the number of vertices, Ci is the clustering coefficient of
vertex i, Ei is the number of vertex i and its neighbors that are actu-
ally connected with i, and Ki is the degree of vertex i.

Weighted clustering coefficient Cw is defined as follows [19]:

Cwc ¼ 1
N

XN
i¼1

Cwc
i ; ð9Þ

Cwc
i ¼ 1

Kiðki � 1Þ
X

i–j–h2½1;N�

ðwcij þwcihÞ
2

aijaihajh ð10Þ

where ki is the degree of vertex i in the corresponding binary net-
work, wcij is the weight of the vertices i; j. aij, aih and ajh are the con-
nection between vertices i and j in the corresponding binary
network where the connection is 1 and no connections are 0.

Characteristic path length shows the average number of the
shortest path between every two vertices and is usually used to
measure the global connectivity of networks. Characteristic path
length is defined as follows [42]:

L ¼ 1
NðN � 1Þ

X
i–j2½1;N�

lij ð11Þ

where lij is the shortest path length between vertices i and.
Weighted characteristic path length Lw is defined as follows

[19]:

Lwc ¼ 1
nðn� 1Þ

X
i–j2N

lwc
ij ð12Þ

lwc
ij ¼ min

1
wcik

þ 1
wckf

þ � � � þ 1
wcmn

þ 1
wcnj

� �
ð13Þ

where lwc
ij is the weighted shortest path length between vertices i

and j.

3. Experiments and results

3.1. WC and adjacency matrix

In the construction of the network, the nodes of the network are
determined. They are the channels of collected signals and the
index of the connection between nodes is the wavelet coherence
value. Wavelet coherence can express the functional connectivity
between different sources of neural oscillatory activities through
the degree of correlation. Therefore, the network constructed by
using wavelet coherence can express the differences between
EEG and EMG as well as the inherent laws, so that the network
has better performance ability. We calculated the WC values
between every two channels. Twelve channels were involved.



Table 1
The difference between different movements and different frequency bands.

theta alpha beta gamma

WE-WF 1.15E�06 0.29E�06 1.01E�06 1.89E�06
WF-CF 1.62E�06 0.49E�06 0.89E�06 1.26E�06
WE-CF 1.81E�07 0.29E�07 0.76E�06 1.21E�06
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Channels 1–8 represent EEG signals, and channels 9–12 represent
sEMG signals. The frequency of EEG and EMG signal acquisition
is different, the number of EEG and EMG data in the same fre-
quency band is different, so we need to adjust the frequency reso-
lution to make the EEG and EMG data in different frequency bands
have the same number of of points to carry out coherence analysis.

We first perform Fourier transform on EEG and sEMG signals,
and adjust the different frequency resolutions in Matlab to keep
the same number of data points of EEG and sEMG for the same fre-
quency band. Then, we studied the coupling characteristics
between different channels in the four frequency ranges of 4–
7 Hz, 8–13 Hz, 14–30 Hz, and 30–80 Hz. For convenience, sEMG
signals in the frequency range of 4–7 Hz, 8–13 Hz, 14–30 Hz, and
30–80 Hz are also called theta, alpha, beta, and gamma.

Fig. 2 shows the WC values of EEG-EEG, EMG-EMG, and EEG-
EMG in different frequency bands. The WC values of EEG-EEG,
EMG-EMG, and EEG-EMG show large differences. For the unifica-
tion of the following research, we normalized the WC values of
each case.

We then constructed the adjacency matrix using the normal-
ized WC values of every two channels. The 12 channels of EEG
and EMG are taken as the horizontal and vertical axes of the
matrix, and then the WC between every two channels is calculated
as the value of the elements in the adjacent matrix. Fig. 3 shows
the adjacency matrix’s colormap of different motions by using dif-
ferent frequency bands. We use the matrix’s difference verification
method to subtract two matrices to obtain a new difference matrix,
and then find the Euclidean norm of the difference matrix. The
result is the distance in the mathematical sense, and the difference
between the two matrices can be directly compared. Then, the sig-
nificance test of the Euclidean norm between different frequency
bands and different actions was conducted. We used Excel to ana-
lyze the significant difference of Euclidean norm. The analysis
method was to conduct an Analysis of Variance (ANOVA) of Eucli-
dean norm between different frequency bands and different
actions, and the p-value was selected as the analysis result. This
means that the probability of the difference between samples
due to the sampling error is less than 0.05, 0.01, 0.001. The results
of p-values were statistically calculated in Table 1. It can be seen
that significant differences were observed in the adjacency matrix
of different motions.
3.2. Construction and simplification of networks

After obtaining the initial adjacency matrix, we preliminarily
constructed the network model. Fig. 4(a) shows the model diagram
without the weighted edge to explain each part of the model. Fig. 4
(b) shows the model diagram with the complete weighted edge,
which was constructed using the initial adjacency matrix.

In our experiment, we used two traditional methods, namely,
THR and FEW, to delete the low weights in the adjacency matrix.
Fig. 2. Wavelet coherence values of EEG-EEG, EMG-EMG, and EEG-EMG in di
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The threshold method that we adopted is the local adaptive thresh-
old method, which is to set the threshold value in accordance with
the connection strength value at a certain position in the adjacency
matrix and the position in the surrounding neighborhood. Gener-
ally, the methods to set the threshold value include the local neigh-
borhood mean method and the local neighborhood Gaussian
weighting method. The method that we selected for this paper is
the neighborhood block mean method. FWE selects a fixed weight
to compare whether there is a difference between Lw and Cw of
the three actions. If there is a difference, it indicates that the selec-
tion of threshold is reasonable. In Fig. 5, K is the average number of
the weighted edges of each vertex. Weighted clustering coefficient
Cw and weighted characteristic path length Lw are the network
characteristics. Fig. 5 shows the changes in Cw and Lw in different
motions when K 2 ½1;4� and the step size is 0.5.

As can be seen from Fig. 5, when Kis greater than 2, Lw between
the three actions gradually tends to be the same. Therefore, we
choose K ¼ 2 as the FWE and remove the weighted edge with K
greater than 2. We constructed network models using different
sets of data to show Cw and Lw in different frequency bands and
the results are shown in Fig. 6.

Fig. 7 shows the changes in Cw and Lw in different motions
when T 2 ½0:5;0:9� and the step size is 0.01. As it can be seen in
Fig. 7, regardless of the threshold value, the Cw gap between differ-
ent actions is very small, and when the threshold is greater than
0.8, the Lw of the three actions starts to show different trends.
To ensure that the selected threshold value will not be small due
to experimental error, we chose 0.85 as the threshold value and
weighted edges less than 0.85 are removed. We constructed net-
work models using different sets of data to show Cw and Lw in dif-
ferent frequency bands and the results are shown in Fig. 8.

Fig. 4(c)–(e) show the simplified model diagram of the three dif-
ferent motions using THR, and Fig. 4(f)–(h) show the simplified
model diagram using FWE. After deleting the low weight, we also
conducted a difference analysis on the new network, and the
results were shown in Fig. 9. The significant differences are shown
in Tables 2 and 3. In these tables, SS means Stdev square, DF means
degree freedom and MS means Mean square and the value is equal
to the corresponding SS divided by DF. F is the statistic, the statistic
used in the analysis of variance for hypothesis testing, and its value
is equal to MS of processing divided by MS of error. The p-value is
the probability value for the corresponding F value. F-crit is the
critical value of F at the corresponding significance level. According
fferent frequency bands. (A) EEG-EEG, (B) EMG-EMG, and (C) EEG-EMG.



Fig. 3. Adjacency matrix’s colormap of different motions using different frequency bands. (a) WF, (b) WE, and (c) CF.
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to the statistical principles, the significance of differences can be
judged by the value of F, so that when F>=F, there is a significant
difference. We compared CW and LW of the network under three
actions respectively, and the results show that the simplified mod-
els obtained by different motions demonstrated significant
differences.
3.3. Model validation with small-world characteristics

Small-world networks have a high clustering coefficient and a
small characteristic path length. We found that the cortical–mus-
cular functional network in this study exhibited small-world char-
acteristics by comparing it with ordered and random networks.
The random network uses the ER random graph model. The ER
model constructs the random graph algorithm as follows:

1. Initialization: given N nodes and connecting probability p[0,1].
2. Random edges: a. Select a pair of different nodes with no edges

connected. b. Generate a random number r(0,1). c. If r Other-
wise no edges are added. d. Repeat steps A-C until all node pairs
have been selected once.
252
The small-world coefficient is a common index used to test the
small-world network, and its calculation method is shown in for-
mula 11–13.

c ¼ Cwexp=Cwrandom ð14Þ

k ¼ Lwexp=Lwrandom ð15Þ

r ¼ c=k ð17Þ
where Cwexp and Lwexp are the clustering coefficient and character-
istic path length of the network to be analyzed, respectively,
Cwrandomand Lwrandomare the clustering coefficient and characteristic
path length of the random network, respectively. The network
under study exhibits ‘‘small-world” characteristics for the small-
world coefficient r being greater than 1, and does not if otherwise.

In our experiment, we analyzed the small-world characteristics
of the obtained functional networks. The weighted clustering coef-
ficientCwand weighted characteristic path length Lw of the corti-
cal–muscular functional, ordered, and random networks were
compared. The results are shown in Figs. 10 and 11, where ‘‘exp”
represents the cortical–muscular functional network obtained by



Fig. 4. Model diagram. (a) Introduction of the model diagram, (b) model diagram with a complete weighted edge, (c) model diagram of WF, (d) model diagram of WE, (e)
model diagram of CF, (f) model diagram of WF, (g) model diagram of WE, and (h) model diagram of CF.

Fig. 5. Changes in Cw and Lw in different motions and different numbers of
weighted edges.
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the current experiment. The size and density of the three networks
were the same. As shown in Figs. 10 and 11, we found that the
weighted clustering coefficient Cw of the cortical–muscular func-
tional network was much larger than that of the random network
and not significantly different from that of the ordered network.
The weighted characteristic path length Lwof the cortical–muscu-
lar functional network was larger than that of the random network
and smaller than that of the ordered network. We have tested the
small-world coefficient values of the network simplified by FWE
and THR methods, as shown in Table 4. The results show that the
constructed cortical–muscular functional network is an effective
complex network with small-world characteristics. The character-
istic path length between nodes is small, while the aggregation
coefficient is still quite high, and its characteristics are between
regular network and random network.
3.4. Model application in motion recognition

In the experimental process of the cortical–muscular functional
network construction, we found that the networks obtained from
WE, WF, and CF exhibited significant differences. As shown in



Fig. 6. Cw and Lw in different frequency bands using FEW.

Fig. 7. Changes in Cw and Lw in different motions and thresholds.
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Fig. 3 and Table 1, the adjacency matrices obtained from WE, WF,
and CF were distinct. We increased the differences by simplifying
the model. When we simplified the model by FEW and THR, we
selected K ¼ 2 as the number of the fixed weighted edge and
T ¼ 0:85 as the threshold on the basis of Figs. 5 and 7, respectively.
Figs. 6 and 8 show the distinctions in different frequency bands.
We then applied the network model to motion recognition now
that the networks obtained from WE, WF, and CF have demon-
strated significant differences.

We used the weighted clustering coefficient Cw and weighted
characteristic path length Lw of the cortical–muscular functional
network as features to recognize the three motions. The Fisher lin-
ear discriminant was selected as the classifier. Fig. 12(a)–(c) show
the feature scatter diagram of every two motions. The feature of
every two motions showed significant differences.

Table 5 shows the recognition rate of every two motions in the
different model-simplified methods. The cortical–muscular func-
tional network simplified by THR obtained high accuracy. The
Fig. 8. Cw and Lw in different fr
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results demonstrate the effectiveness of the cortical–muscular
functional network in practical applications.

In addition, we also used a three-layer Artificial neural network
(ANN) to train a three-classification model. When setting the num-
ber of nodes in the ANN’s hidden layer, we referred to the following
three different empirical formulas.

m ¼
ffiffiffiffiffiffiffiffiffiffi
nþ l

p
þ a ð18Þ

m ¼ log2n ð19Þ

n ¼
ffiffiffiffiffi
nl

p
ð20Þ

where m refers to the number of nodes in the hidden layer, n refers
to the number of nodes in the input layer, l refers to the number of
nodes in the output layer, and a refers to a constant between 1 and
10. We input the Lw and Cw of the network constructed under WE,
WF and CF as features into our ANN. We used 90% of the collected
data for training and 10% for verification. The accuracy of the final
classification is shown in Table 6. It can be seen from Tables 5
and 6 that the network model simplified by THR has a higher clas-
sification accuracy.

In summary, the cortical–muscular functional network we con-
structed has small-world characteristics and can be used in practi-
cal applications after proper simplification. The study’s results
demonstrate the effectiveness of the networks and provide a foun-
dation for subsequent research on the motion control mechanism
of the central nervous system and the coordination mechanism
of limb motion control.
4. Discussions and conclusions

Traditional brain functional networks focus on decoding cortical
activity and trying to find functional connections between different
cortical regions, while few studies use cortical and muscle func-
tional networks to explore the body’s motor mechanisms. Using
previous research studies on brain functional networks and CMC,
this paper adds EEG and EMG to the complex network for the first
time, and proposes a cortical-muscular functional network to ver-
equency bands using THR.



Table 2
CW differences between different actions.

SS df MS F P-value F crit

WE-WF 0.116389 1 0.116389 42.01822 1.29E-06 4.279344
WE-CF 0.173123 1 0.173123 86.6395 2.91E-09 4.279344
WF-CF 0.005613 1 0.005613 2.939031 0.099909 4.279344

Table 3
LW differences between different actions.

SS df MS F P-value F crit

WE-WF 0.006438 1 0.006438 0.538734 0.470374 4.279344
WE-CF 0.370689 1 0.370689 53.75321 1.85E-07 4.279344
WF-CF 0.279421 1 0.279421 23.73337 6.41E-05 4.279344

Table 4
Small world coefficients of the network under different actions.

WF WE CF

r (FWE) 1.9775 1.5445 2.8413
r (THR) 1.8954 1.9652 2.6584

Fig. 9. The difference between CW and LW of the new adjacency matrix.
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ify the information interaction between brain and muscle during
human movement to explain the mechanism of movement.
According to the function of brain region and the muscles of each
arm, we selected 12 nodes of functional network and considered
WC value as the indicator of the connection between nodes. When
the subjects were performing three actions, the WC value of EEG-
EMG was between EEG-EEG and EMG-EMG, and the WC value of
WE, WF and CF also showed significant differences in different fre-
quency bands. That is to say, different movements and frequency
bands performed by human body can be distinguished by WC,
Fig. 10. Comparison of the cortical–muscular functional network si
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and the features of the functional network established thereby
can reflect the movement intention of human body. When simpli-
fying the constructed functional network, FWE method selects a
fixed threshold value globally, while THR method sets a threshold
value in accordance with the connection strength value at a certain
position in the adjacency matrix and the position in the surround-
ing neighborhood. The method selected in this paper is the neigh-
borhood block mean value method. Compared with FWE, THR is
more flexible in the selection of thresholds with regional changes.
Therefore, the network simplified by THR shows better character-
istics, including small-world characteristics of the network and
better separability, showing the potential of using cortical muscle
activity to improve the traditional sEMG controller. The successful
application of cortical muscle functional network in the decoding
of human motor intention lays a foundation for the exploration
of more effective methods of human behavior perception. In addi-
tion, our functional network can also study the pathology of
mplified by THR, an ordered network, and a random network.



Table 5
Recognition rate of every two motions in different model-simplified methods.

WF versus WE WF versus CF WE versus CF

THR 90% 82.5% 95%
FEW 85% 60% 82.5%

Table 6
recognition rate of three motions in different model-simplified methods.

WE WF CF

THR 94.2% 84% 88.3%
FWE 79.3% 70.2% 80.3%

Fig. 12. Feature scatter diagram. The diagrams in the left and right represent the feature obtained from the cortical–muscular functional network simplified by THR and FEW,
respectively. (a) WF-WE, (b) WF-CF, and (c) WE-CF.

Fig. 11. Comparison of the cortical–muscular functional network simplified by FWE, an ordered network, and a random network.
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patients with dyskinesia from the physiological mechanism, and
develop scientific rehabilitation training methods to help patients
recover as soon as possible.

One of the limitations of our approach is that the nodes may not
be optimal for building a functional network. When selecting
nodes, it is necessary to reasonably select acquisition channels in
accordance with the functions of different brain regions and mus-
cle regions. It is, however, a complex process. In future studies, in
addition to the common THR and FWE, we also need to explore
better optimization methods to simplify our functional networks.
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