
Brain Research 1752 (2021) 147221

Available online 23 December 2020
0006-8993/© 2020 Elsevier B.V. All rights reserved.

Effect of muscle fatigue on the cortical-muscle network: A combined 
electroencephalogram and electromyogram study 

Xugang Xi a,b,*, Shaojun Pi a,b, Yun-Bo Zhao c, Huijiao Wang d, Zhizeng Luo a,b,* 

a School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China 
b Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China 
c Department of Automation, Zhejiang University of Technology, Hangzhou 310023, China 
d Hangzhou Vocational & Technology College, Hangzhou 310018, China   

A R T I C L E  I N F O   

Keywords: 
Muscle fatigue 
Symbolic transfer entropy 
Cortical-muscle network 
Electroencephalogram 
Electromyogram 

A B S T R A C T   

Electroencephalogram (EEG) and electromyogram (EMG) signals during motion control reflect the interaction 
between the cortex and muscle. Therefore, dynamic information regarding the cortical-muscle system is of 
significance for the evaluation of muscle fatigue. We treated the cortex and muscle as a whole system and then 
applied graph theory and symbolic transfer entropy to establish an effective cortical-muscle network in the beta 
band (12–30 Hz) and the gamma band (30–45 Hz). Ten healthy volunteers were recruited to participate in the 
isometric contraction at the level of 30% maximal voluntary contraction. Pre- and post-fatigue EEG and EMG 
data were recorded. According to the Borg scale, only data with an index greater than 14<19 were selected as 
fatigue data. The results show that after muscle fatigue: (1) the decrease in the force-generating capacity leads to 
an increase in STE of the cortical-muscle system; (2) increases of dynamic forces in fatigue leads to a shift from 
the beta band to gamma band in the activity of the cortical-muscle network; (3) the areas of the frontal and 
parietal lobes involved in muscle activation within the ipsilateral hemibrain have a compensatory role. Classi
fication based on support vector machine algorithm showed that the accuracy is improved compared to the brain 
network. These results illustrate the regulation mechanism of the cortical-muscle system during the development 
of muscle fatigue, and reveal the great potential of the cortical-muscle network in analyzing motor tasks.   

1. Introduction 

Muscle fatigue is defined as a decline in the ability to maintain a 
certain level of strength during continuous contraction, or failure to 
reach the initial strength level during intermittent contraction, which is 
reflected in the electrical activity of the muscle (Ament and Verkerke, 
2009). This term indicates the feeling that it is more difficult than the 
expected or requires more effort. For healthy people, repetitive or 
continuous muscle activation will result in fatigue, which is common in 
exercise or daily life. The most intuitive effects is the decrease in the 
muscle’s ability to produce force, which increases the likelihood of 
muscle injury. This performance is also closely related to patients with 
motor dysfunction, such as stroke and cancer. Hence, it is of utmost 
importance to understand and assess muscle fatigue effectively and 
accurately. 

Since the relationship between electroencephalogram (EEG) and 
electromyogram (EMG) during motion was first identified (Conway 

et al., 1995), dynamic cortical-muscle communication has become an 
important research topic. Cortical-muscle coherence (CMC) is closely 
related to body motion (Belardinelli et al., 2017; Yoshida et al., 2017). 
The same research interest has also been applied to muscle fatigue (Yang 
et al., 2009) that CMC decreased after maximum voluntary contraction- 
induced fatigue. Subsequently, they optimized the experimental para
digm based on the fact that fatigue is a progressive process, and reached 
the same conclusion (Yang et al., 2010). In contrast, a recent study 
(Martínez-Aguilar and Gutiérrez, 2019) set individual fatigue thresholds 
for volunteers and found CMC to both increase and decrease. This may 
reflect the subject’s ability to continue after the onset of fatigue. 
Meanwhile, the reduction in the power of EEG and EMG (Liu et al., 
2005), the reduction in the coherence of EEG (Di Fronso et al., 2018), 
and the increase in EMG cyclostationarity (Karthick et al., 2016) have 
also been reported. Inconsistent conclusions are likely to be the result of 
two limitations of these studies, related to the direction of information 
flow of the cortical-muscle network (Mima et al., 2000), and the fact that 
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both the brain and muscle are involved in the development of fatigue 
(Gandevia, 2001). Stroke research shows that, in CMC, commands are 
transmitted through communication, not sensory feedback (Mima et al., 
2001). In addition, exercise is coordinated by multiple brain regions and 
muscles, and the brain and muscle groups form a complex system 
composed of hundreds of billions of neurons (Baars and Gage, 2010). 

To improve knowledge in the above topic, for the first time, we 
propose a method to establish the cortical-muscle network by combining 
symbolic transfer entropy (STE) (Staniek and Lehnertz, 2008) and graph 
theory (Strogatz, 2001) to investigate muscle fatigue. Owing to the 
asymmetry (directed) and process (dynamic) probability calculations, 
the STE method is particularly effective in detecting nonlinear in
teractions (Staniek and Lehnertz, 2008) and has been previously applied 
to EEG and EMG signals (Gao et al., 2018; Yao and Wang, 2017). Graph 
theory provides a powerful method for quantitative research on brain 
network organization (Wang et al., 2018). Network characteristics such 
as shortest path length, clustering coefficient, efficiency, and small- 
world property are used to describe the network (Sheffield et al., 
2017). Communication dynamics may act as potential generative 
models of effective connectivity and can offer insight into the mecha
nisms by which brain networks transform and process information 
(Avena-Koenigsberger et al., 2018). When the combination of graph 
theory and STE acts on EEG/EMG, the outcome is a network with nodes 
as EEG and EMG channels, and the edge represents the directed coupling 
strength between the channels. 

Moreover, it is necessary to validate the proposed method by training 
the classifier with the extracted cortical-muscle network characteristics 

and distinguishing whether fatigue. In this study, we adopted a support 
vector machine (SVM) algorithm to train a classifier, and to identify 
whether the muscle is in a fatigue state. 

2. Results 

2.1. Adjacency matrices 

Weighted directed adjacency matrices were first obtained by STE for 
the beta and gamma bands within each state. Fig. 1 shows the grand 
average connectivity matrices for the pre-fatigue and post-fatigue pe
riods. With respect to muscle fatigue, the average STE in the adjacency 
matrix increases. The paired-Student’s t-test was conducted to identify 
significant differences between the two states across all frequency 
bands. The results indicated that STE within the beta band showed no 
significant differences (p = 0.54), but significant differences in the 
gamma band were observed (p = 0.04). Fig. 2 shows the binary network 
of individual subject in a single experiment, converted from a weighted 
adjacency matrix based on cost efficiency. The effective connection 
between nodes are represented by lines, and the direction is expressed as 
a line from thin to thick. The statistical analysis results showed that after 
fatigue, the network connection in the beta frequency band becomes 
sparse (p = 0.03), while the network connection in the gamma frequency 
band becomes tighter (p = 0.007). 

Fig. 1. Group-average adjacency matrices. (A) Group-average adjacency matrix during pre-fatigue in the beta band; (B) Group-average adjacency matrix during post- 
fatigue in the beta band; (C) Group-average adjacency matrix during pre-fatigue in the gamma band; (D) Group-average adjacency matrix during post-fatigue in the 
gamma band. For all, the element in the matrix such as (C3, FDS) represents the STE value from C3 to FDS. 
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2.2. Network characteristics 

The average degree, local efficiency, and clustering coefficient of the 
cortical-muscle network are shown in Fig. 3(A, B and C), respectively. 
Significant differences (p < 0.05) before and after fatigue for each 
channel are marked. 

A high in-degree is interpreted as a channel that accepts more in
formation from other channels and is more likely to be affected by other 
channels, while a high out-degree means that this channel acts more as a 
functional target in the network. It is apparent from Fig. 3A that the 
average value of the in-degree and out-degree during the post-fatigue 
period was smaller than the pre-fatigue period in the beta band, while 
the gamma band showed the opposite, which was greater than in the 
pre-fatigue period. Paired Student’s t-testing was performed further on 
the average degree of all nodes. There were no significant differences in 
the degrees of the beta band (in-degree: p = 0.37; out-degree: p = 0.54), 
but significant differences in the degrees of the gamma band were 
observed (in-degree: p = 0.03; out-degree: p = 0.04). 

Local efficiency measures the local information transmission capa
bility of the network and informs us about the fault-tolerance of the 
network system, while the clustering coefficient describes the degree of 
clustering between the channels in the network. Specifically, it is the 
degree of interconnection between adjacent channels of a channel. In 
Fig. 3(B and C), it is interesting to note that they show the same trend, 
like degrees: a decrease in the beta band, and an increase in the gamma 
band. Paired-Student’s t-tests were also performed on the average of 
these two indexes of all nodes. The results showed significant differences 
for the factor group within each band (local efficiency: p-beta = 0.003, p- 
gamma < 0.001; clustering coefficient: p-beta = 0.02, p-gamma < 0.001). 

Watts and Strogatz (1998) combined the shortest path length and the 
clustering coefficient to propose a small-world property. Here, to 
explore whether the effective cortical-muscle network established by 
taking the cortex and muscle as a whole is a small-world network, we 

applied small-world measurements to the analyzed network. Table 1 
shows the summary result for all subjects, which indicate that the 
cortical-muscle networks are all a small-world network. A t-test was 
performed on the small-world property indexes to analyze the rela
tionship between pre-fatigue and post-fatigue. There were no significant 
differences in the beta band (p = 0.51), but significant differences in the 
gamma band (p = 0.03). 

2.3. Muscle fatigue recognition 

To validate the feasibility of the proposed method, we performed 
muscle fatigue recognition in the beta band and the gamma band based 
on the extracted features. Table 2 shows the average recognition accu
racy (AC) in the two frequency bands. It can be seen that, according to 
our proposed method, the average accuracy of beta band is 72.6%, and 
the average accuracy of gamma band is 81.7%; these values were higher 
than the corresponding values measured using the brain network 
method. 

3. Discussion 

The present study combined STE and graph theory to research the 
effective cortical-muscle network in healthy people under different 
muscle states. From the perspective of degree, local efficiency, clustering 
coefficient, and small-world property, we analyzed the differences be
tween effective networks to explore the mechanisms of muscle fatigue. 
The results show that compared to the pre-fatigue period, the topology 
of the cortical-muscle network may present differences during fatigue. 

Regarding the strengthening of STE, we propose a hypothesis that 
due to the ability of output force to decrease after fatigue (Wan et al., 
2017), more effort is needed, which increases the force level indirectly. 
This hypothesis is in agreement with previous studies, wherein the CMC 
of the beta band and gamma band increased with an increase in the force 

Fig. 2. Network presentation and statistical analysis results. (A) Network presentation during pre-fatigue in the beta band; (B) Network presentation during post- 
fatigue in the beta band; (C) Group-average number of network edges in the beta band; (D) Network presentation during pre-fatigue in the gamma band; (E) Network 
presentation during post-fatigue in the gamma band; (F) Group-average number of network edges in the gamma band. Each edge represents the direction; the thin 
section directed towards the thick section. For all, **p < 0.01, *p < 0.05. 
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Fig. 3. Group-average Network characteristics in the beta band (left) and gamma band (right). (A) Group-average degree (in-degree and out-degree). Pre-in means 
in-degree during pre-fatigue, pre-out means out-degree during pre-fatigue, post-in means in-degree during post-fatigue and post-out means out-degree during post- 
fatigue; (B) Group-average local efficiency; (C) Group-average clustering coefficient. For all, the black line means during pre-fatigue and the red line means during 
post-fatigue, *p < 0.05. 

Table 1 
Clustering coefficient, shortest path length, and small-world index in two muscle states of each subject.   

Beta Gamma 

Pre-fatigue Post-fatigue Pre-fatigue Post-fatigue 

Creal Lreal σ  Creal Lreal σ  Creal Lreal σ  Creal Lreal σ  

S1 0.52 0.33 1.57 0.62 0.44 1.36 0.52 0.23 2.05 0.69 0.57 1.13 
S2 0.53 0.27 1.98 0.56 0.29 1.91 0.62 0.29 1.98 0.72 0.56 1.20 
S3 0.55 0.31 1.77 0.49 0.30 1.60 0.69 0.33 1.93 0.75 0.56 1.25 
S4 0.72 0.42 1.66 0.57 0.35 1.61 0.66 0.39 1.59 0.50 0.35 1.32 
S5 0.72 0.35 1.99 0.65 0.41 1.55 0.63 0.40 1.47 0.72 0.60 1.12 
S6 0.60 0.38 1.54 0.56 0.34 1.59 0.58 0.48 1.13 0.78 0.62 1.17 
S7 0.57 0.36 1.72 0.74 0.51 1.41 0.61 0.48 1.18 0.80 0.60 1.25 
S8 0.65 0.41 1.37 0.71 0.40 1.75 0.73 0.51 1.32 0.79 0.45 1.64 
S9 0.63 0.43 1.45 0.65 0.45 1.41 0.74 0.58 1.20 0.70 0.58 1.16 
S10 0.57 0.31 1.80 0.66 0.40 1.61 0.70 0.39 1.67 0.67 0.60 1.04 

Creal = Network clustering coefficient. Lreal = Global shortest path length.σ = Small-world index. 
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level (Chakarov et al., 2009). Practically, it has been found by surface 
electromyographic decomposition technology that fatigue requires more 
motor units to participate (Contessa et al., 2016). Based on this, it is 
clear that more new motor units are recruited due to the decrease in the 
ability of output force, resulting in increased STE. A similar results 
(Wang et al., 2015) have also been reported that the coherence of EMG 
increases during sustained submaximal isometric contraction-induced 
fatigue. The increased STE may maintain force stability on the basis of 
maintaining the force output. 

Our results show that the network characteristics show the same 
overall change trend. Under fatigue, the most obvious characteristics 
occur in the gamma band, and these characteristics are decreased in beta 
band while increased in the gamma band, which implies that muscle 
fatigue leads to the activity of the cortical-muscle network to shift from 
the beta band to the gamma band. We initially believed that this was due 
to the modulation of different forms of force by the cortical-muscle 
system. Because under static forces, significant coherence is limited to 
the beta band; whereas under dynamic forces, the most obvious coher
ence occurs in the gamma band, and the beta band coherence is signif
icantly reduced (Omlor et al., 2007). However, the decrease in the beta 
band did not appear in the STE of our result. At this point, we hesitated 
to interpret these differences because the fatigue data we processed had 
more dynamic forces. Meanwhile, our results showed that the left 
hemibrain (especially F3, C3, and P3) had a higher overall in-degree. 
This suggests that a great amount of information flows from other 
brain regions. This means these brain regions may act as a “network 
navigation hub” in different muscle states. Deleting this node from the 
network is likely to lead to the whole cortical-muscle system to crash. 
More specifically, the muscle-activated contralateral hemibrain assumes 
more exercise control and planning responsibilities in maintaining the 
grip strength meter to reach the specified task. 

The nodes with a high clustering coefficient act as activation centers. 
A distinct activation center existed in both the beta band and gamma 
band during the pre-fatigue period; as fatigue developed, the obvious 
activation center was limited to the gamma band, while no significant 
activation center was found in the beta band. It should be emphasized 
that in addition to the central region related to motion, the frontal and 
parietal lobes also appear in these changes in the clustering coefficient. 
Parietal lobe atrophy causes involuntary fatigue in patients (Pellicano 
et al., 2010), and the EEG power spectrum of the frontal lobe increased 
during long-term exercise at high temperature to exhaustion (Nielsen 
et al., 2001), which indicates the importance of parietal and frontal 
lobes during muscle fatigue. From this characteristic, we infer that the 
frontal and parietal lobes may play a compensatory role in fatigue. 
Although there is no direct connection, our results link the changes in 
the network topology and suggest that the frontal and parietal lobes of 
muscle activation in the ipsilateral hemibrain are related to the 
compensation mechanism in autonomous fatigue. However, it seems 
that we cannot explain how they compensate for fatigue here due to 
methodological limitations. Liu et al. (2007) found that the center of 
gravity of the EEG source moved to the muscle-activated anterior and 
lower cortical regions of the ipsilateral hemibrain. Our results provide 
evidence for the same phenomenon in the frontal and parietal lobes of 
the right hemibrain in the gamma band. This indicates that the cortical- 
muscle system will compensate for the decline in capacity in other re
gions, or greater demand due to fatigue by activating the frontal and 

parietal lobes of the right hemibrain. It should be noted that although 
there are differences in the activity of muscle groups before and after 
fatigue, the trend of the characteristic curve in muscle groups has not 
changed, which means that the muscle has more of a feedback role 
rather than being dominant. We also showed that the cortical-muscle 
networks established in this work presented a small-world network 
property like the brain network (Muldoon et al., 2016), which is char
acterized by a large clustering coefficient and a small shortest path 
length. 

The proposed method increases the number of nodes compared to 
the brain function network, which consequently leads to an increase in 
the feature dimension. This may increase the redundant information in 
the feature matrix and reduce the recognition accuracy. However, the 
results show a slight increase in accuracy. The cortical-muscle network 
can still correctly reflect the characteristics of normal and fatigue states, 
which verifies the feasibility of the proposed method. In addition, the 
improvement of recognition accuracy also implies the great potential of 
cortical-muscle network research. 

The current study has some limitations. First, only three EMG 
channels and ten EEG channels in the 64-channel acquisition device 
were selected; fewer channels may miss some movement-related areas, 
such as the occipital lobe (Busan et al., 2009), and some metrics are very 
sensitive to network size. Second, the choice of EEG signal frequency 
remains to be discussed. STE is an algorithm based on the time domain 
and can be applied to signals in different frequency ranges. In our 
analysis, only EEG and EMG signals of 12–45 Hz were considered, and 
the main frequency distribution of EMG was ignored at 45–150 Hz, 
which will result in the loss of some dynamic information from the EMG 
signals. 

4. Conclusions 

As far as we know, this is the first research to treat the cortex and 
muscle groups as a whole to establish an effective cortical-muscle 
network to analyze muscle fatigue. The results showed that both the 
connection strength and topology of the network changed after fatigue. 
The shifting from beta band to gamma band in the activity of the 
cortical-muscle network, and the compensatory role of the contralateral 
frontal and parietal lobe reveals a regulatory mechanism of human 
neurons on muscle fatigue, provides new insights and quantitative 
standards into the study of motion fatigue. Our work also implied the 
great potential of establishing a cortical-muscle network to analyze 
motion-related events. The method proposed in this study can be further 
applied to fatigue caused by some diseases, and it is expected to have an 
impact on the application of clinical research. 

5. Material and methods 

5.1. Overview 

Fig. 4 provides an overview of the research workflow. After pre
processing EEG and EMG, STE was initially used to calculate the 
weighted directed adjacency matrix. Then, the threshold was deter
mined to convert the weighted matrix to a binary matrix. Finally, the 
network characteristics were calculated for further analysis. 

5.2. Experimental paradigm 

In the experiment carried out in our study, ten right-handed volun
teers from Hangzhou Dianzi University were recruited (2 women and 8 
men; mean age, 23.4 years). Table 3 provides the demographic infor
mation of each subject. Subjects were excluded if they had neurological 
or musculoskeletal disorders, and/or consumption of illicit drugs, as 
well as head trauma. All subjects were required to provide written 
informed consent according to the Declaration of Helsinki, and the study 
was approved by the local ethics committee. 

Table 2 
Comparison of the recognition performance in the proposed method and the 
brain network method.  

Frequency beta gamma 

AC-CMN (%)  72.6  81.7 
AC-BN (%)  71.9  75.6 

AC-CMN = Accuracy based on the cortical-muscle network. AC-BN = Accuracy 
based on the brain network. 
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Before the experiment began, the maximum grip strength of each 
subject was recorded. The subject was sitting in an electrically shielded 
room with their forearm placed on the table, while maintaining 30% 
maximal voluntary contraction (MVC) on the grip strength meter after 
an audio signal prompt (Fig. 5A). The experiment was divided into two 
steps: pre-fatigue and post-fatigue (Fig. 5B), and the post-fatigue 
experiment was carried out one day after the pre-fatigue experiment 
to avoid the influence of the previous experiment on the results.  

(1) Pre-fatigue: Audio signal prompts were used to indicate the start 
and end of one experiment. During this experiment, the subject 
performed the gripping task and reached 30% of their MCV 
within 1 s, and then maintained it for 5 s. The whole process took 
6 s, with a rest of 20 s between each action in order to avoid 

muscle fatigue. This task was repeated 10 times to complete the 
acquisition of pre-fatigue data.  

(2) Post-fatigue: The above steps were repeated, while scores on the 
Borg Scale (Borg, 1998) of Perceived Exertion were recorded 
after each action, with an interval of 2 s between each movement. 
Only 10 data points with a Borg fatigue index (BFI) score between 
14 and 19 were recorded, as shown in Table 2. 

5.3. Data acquisition and pre-processing 

A 64-channel (NeuSen.W64, Neuracle, China) EEG signal and three- 
channel EMG signal (DelsysInc, Natick, MA, USA) were collected 
simultaneously at a sampling frequency of 1,000 Hz. According to the 
international 10–20 system, we selected 10 channels (F3, F4, FC3, FC4, 
C3, C4, CP3, CP4, P3, and P4), after removing the bad channels, from 64 
EEG channels. EMG signals were recorded from the flexor carpi ulnaris 
(FCU), flexor digitorum superficialis (FDS), and flexor carpi radialis 
(FCR). The skin surface was cleaned with alcohol before connecting the 
electrodes. 

The EEGLAB toolbox (Delorme and Makeig, 2004) was used to pre
process the EEG signal re-referenced to the common average reference. 
Independent component analysis was used to remove artifacts, such as 
eye movement. The combination of empirical mode decomposition 
(EMD) and wavelet threshold was used to remove noise in the EMG 
signals. Through band-pass filtering, both EEG and EMG were divided 
into beta band (12–30 Hz) and gamma band (30–45 Hz) for further 
analysis. 

5.4. Data analysis 

5.4.1. Symbolic transfer entropy 
Staniek and Lehnertz (2008) proposed STE by combining transfer 

entropy (TE) with the concept of symbolization. Symbolizing the signal 
before TE calculation can capture large-scale dynamic characteristics 
and reduce the influence of noise. Given the time series X = {x1, x2, ...xi}

and Y = {y1,y2, ...yi}, where i is the sampling point. The symbolization 
process (Gao et al., 2018) is defined as: 

Fig. 4. Overview of the research workflow. (A) Presentation of experimental environment and subject posture; (B) Raw EEG and EMG data were recorded from 
electrodes; (C) Raw data were preprocessed and band-passed using the filter in two frequency bands: beta (12–30 Hz) and gamma (30–45 Hz); (D) Adjacency matrix 
calculated by symbolic transfer entropy; (E) Binary matrix after binarizing the adjacency matrix based on the determined threshold; (F) Network feature developed 
from the binary adjacency matrix. 

Table 3 
Demographic information and the Borg fatigue index of each subject.  

Subject Gender Age Dominant 
hand 

MVC 
(kg) 

BFI 

S1 Female 21 Right 31.1 15 17 16 15 17 18 17 16 
16 17 

S2 Female 21 Right 27.9 15 16 18 16 17 19 18 18 
16 16 

S3 Male 23 Right 52.1 15 15 16 15 14 16 16 17 
17 17 

S4 Male 24 Right 45.3 15 17 16 15 17 15 15 16 
17 18 

S5 Male 24 Right 43.3 16 15 15 16 16 18 17 15 
17 18 

S6 Male 26 Right 53.1 16 15 17 15 15 16 17 17 
19 18 

S7 Male 24 Right 47.9 15 15 16 15 18 17 17 17 
18 18 

S8 Male 25 Right 48.0 15 16 15 16 17 18 17 17 
18 17 

S9 Male 23 Right 60.0 16 15 15 16 17 17 18 18 
16 16 

S10 Male 23 Right 49.4 16 15 15 17 17 16 16 15 
17 17 

MVC = Maximal voluntary contraction. BFI = Borg fatigue index. 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
p
2
, min(x)⩽x(i) < min(x) + delta

−
p
2
+ 0.5, min(x) + delta⩽x(i) < min(x) + 2*delta

⋯⋯

0, min(x) + (p − 1)*delta⩽x(i) < min(x) + p*delta

⋯⋯
p
2
− 0.5, max(x) − 2*delta⩽x(i) < max(x) − delta

p
2
, max(x) − delta⩽x(i) < max(x)

(1)  

where S(i) represents the symbolized sequence, min and max represent 
the minimum and maximum values of the time series respectively, delta 

was defined as delta =
max(x)− min(x)

p− 1 , the symbolic scale parameter was 
denoted as p. To select an appropriate scale parameter, the objective 
function G (Gao et al., 2018) was defined as: G = M − S, where M and S 
represent the average values and standard deviation of the STE, 
respectively. The scale parameter was determined as the abscissa when 
G reached its peak. Fig. 6 shows the average STE from C3 to FDS for each 
scale in the interval 5–50 with a step of 5. The blue line represents the 
average values of STE and the red line represents the value of the 
objective function G. The short vertical lines denote the standard devi
ation of the STE. Based on the red line, the scale parameter of STE was 
set to 45 in the beta band and 40 in the gamma band. 

Symbolized signal Xs = {xs
1, xs

2, ...xs
i} and Ys = {ys

1, ys
2, ...ys

i} were 
obtained after symbolization. Then the STE of X to Y was defined as: 

Fig. 5. Experimental setup and paradigm. (A) Experimental environment and posture of the subjects in the experiment. Audio signal prompts were used to indicate 
the start and end of one experiment; (B) Flow of the experimental task. Each experiment took 6 s. For pre-fatigue experiment, the interval between each experiment 
was 20 s; for post-fatigue experiment, the interval between each experiment was 2 s, and the Borg fatigue index was recorded after each experiment. 

Fig. 6. Determination of the time scale parameter in symbolization. (A) Average values of the STE and G during pre-fatigue in beta band; (B) Average values of the 
STE and G during pre-fatigue in gamma band. The blue line represents the average values of STE from C3 to FDS. The red line represents the value of the objective 
function G. The short vertical lines denote the standard deviation of the STE. The green circle marks the maximum value of the objective function G. 
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(2)  

where p(∙) represents the probability distribution. The STE of Y to X can 
be calculated as the same way. Under this measure, the value of STE 
indicates the strength of the coupling relationship between X and Y. 
Note that when X and Y are the same, STE = 0. 

In this study, we calculated the STE of EEG-EEG, EMG-EMG and EEG- 
EMG in two frequency bands (beta band and gamma band). The STE of 
EMG-EMG had a 3*3 matrix, the STE of EEG-EEG had a 10*10 matrix, 
the STE of EEG-EMG had a 10*3 matrix (EEG → EMG) and a 3*10 matrix 
(EMG → EEG), and finally we integrated these STE matrices into a 13*13 
weighted adjacency matrix. The matrix element represents the STE 
value from the row channel to the column channel. 

5.4.2. Threshold determination 
To binarize the weighted adjacency matrix, a cost efficiency (Ce) 

threshold (th) was adopted: 

th = max{Ce} = max{Eg − D} (3) 

Here D is the network density, which is defined as the ratio of the 
actual number of edges to the number of all possible edges; and Eg 
represents the global efficiency: 

Eg =
1

N(N − 1)
∑N

i∕=j

1
Li,j

(4)  

where Li,j represents the shortest path length between the nodes i and j, N 
is the number of nodes in the graph. 

The threshold that maximizes cost efficiency was used to binarize the 
weighted matrix. We set an individualized threshold for each adjacency 
matrix, which resulted in a directed binary adjacency matrix for further 
graph analysis. 

5.4.3. Graph analysis 
In this study, the degree, local efficiency, clustering coefficient, and 

small-world index of the binary cortical-muscle network were 
calculated. 

For the analyzed network, the in-degree of a node represented the 
number of edges directed towards this node from other nodes, and the 
out-degree represented the number of edges directed towards other 
nodes from this node. 

The local efficiency was defined as the average efficiency of the local 
sub-graphs, and El was defined as El = 1

N
∑N

i=1Eg(Ai), where Eg(Ai) rep
resents the global efficiency of Ai (the sub-graph of the neighbors of the 
node i), which can be obtained by Eq. (4). 

The clustering coefficient represented the possibility that the 
neighbors of a node became neighbors of each other, and the local 
clustering coefficient of node i was defined as Ci = 2Bi

Ki(Ki - 1), where Bi 

represented the number of connections between neighbor nodes of node 
i, and Ki represented the number of neighbor nodes of node i. 

The small-world index is defined as: 

σ =
Creal

Crandom

/
Lreal

Lrandom

(5)  

Where Creal and Crandom are the network clustering coefficient of the 
analyzed network and the random network, respectively; Lreal and 
Lrandom are the global shortest path length of the analyzed network and 
the random network, respectively. The network clustering coefficient 
can be calculated by C = 1

N
∑N

i=1Ci, and the global shortest path length 
can be calculated by L = 1

Eg
. If the small-world index  greater than 1 σ, 

this means that the network has the small-world property. 

5.5. Statistical analysis and classification 

To evaluate the statistical differences in the STE, degrees, local ef
ficiency, clustering coefficient, and small-world properties before and 
after fatigue, paired Student’s t-tests were used. An α-level of 5% was 
chosen for further statistical analyses. Multiple comparison correction 
based on the Benjamini-Hockberg method was performed to control the 
false discovery rate. 

The degree, efficiency, and clustering coefficient have been calcu
lated for each node in each cortical-muscle network, resulting in 3*13 
feature matrix (3 types and 13 channels) for each frequency band. 
Subsequently, according to the 10-fold cross-validation, these feature 
matrices were taken as input of the SVM algorithm to train the classifier 
for the final fatigue recognition. The SVM classifier was implemented by 
the LIBSVM toolbox in MATLAB and parameters were set to default 
values. Similarly, we also calculated these features of brain network 
(3*10 feature matrix) for comparison. 
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