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Abstract— In this paper, a novel iterative self-triggered model
predictive control strategy is proposed for continuous-time
nonlinear systems with external disturbances. For this strategy,
the triggering instants are determined by iteratively using
the self-triggered mechanism. To be specific, the triggering
mechanism, on the one hand, determines the next sampling
instants of the sensor by a prespecified condition, and, on the
other hand, decides whether or not to treat the current sampling
instant as the triggering instant. Without continuous monitoring
of the state, the sensing cost of the sensor can be alleviated.
The utilization of the sampling states after the triggering instant
leads to a larger triggering interval, and the computational load
of the controller can thus be reduced. The effectiveness of the
proposed strategy is validated by a numerical example.

I. INTRODUCTION

The conventional execution of control tasks is usually im-
plemented in a periodic way, which may cause unnecessary
energy consumption, such as the unnecessary utilization of
communication in networked control systems [1]. Therefore,
it is desirable to reduce the number of transmissions. With
this motivation, event-based control has given rise to much
attention in recent years, since it offers the advantage of per-
forming actuation only when the system needs attention [2].
Loosely speaking, event-triggered control and self-triggered
control are two main event-based control approaches [3].

Model predictive control (MPC) has played an important
role both in industry and academia for decades due to its
conspicuous advantages in dealing with constraints and non-
linearities [4]. In a nonlinear MPC algorithm, a finite-time
optimal control problem (OCP) needs to be solved repeatedly
at every update time, resulting in a heavy computational load,
which impedes the wide application of MPC. Therefore, it
is quite necessary to design a scheduling strategy to reduce
the consumption of computation resources when performing
the MPC algorithm.

The event-based MPC framework provides a promising
way to alleviate the computational load because it reduces
the number of the OCP to be solved, see, e.g., [5]–[8] for
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event-triggered MPC and [9]–[11] for self-triggered MPC.
For event-triggered MPC, the OCP is solved only when some
prescribed triggering conditions are violated. For example,
the event-triggered MPC for continuous-time nonlinear sys-
tems is investigated in [5], where the computational load
is reduced significantly. This result is extended in [6] by
considering the state constraints. However, one may notice
that continuous monitoring of the state is required for the
event-triggered MPC of continuous-time systems, leading to
high sensing cost. To overcome this drawback, intermittent
sampling is proposed in [7], but the result is conservative
because the sampling time is still relatively small (sampling
frequency is high).

For self-triggered MPC, the OCP is solved and the next
triggering time instant is determined according to the resul-
tant predictive state and control sequences. As a result, the
continuous monitoring is no longer required. However, for
the perturbed system, since the predictive state error, i.e., a
deviation between the predicted state and the actual one, is
derived by using the worst case of the disturbance without
resorting to the current system state, a conservative triggering
instant may be obtained compared with the one obtained
by the event-triggered strategy [12]. Therefore, although the
sensing cost is reduced, the communication load may still
heavy.

Motivated by the above facts, we propose an iterative
self-triggered MPC strategy that combines both the advan-
tages of the event- and self-triggered control. First, we
determine the sampling instant in a self-triggered manner
rather than periodically in event-triggered MPC . Then, the
next sampling instant is obtained by employing the true
predictive state error computed based on the sampled state.
The sampling instant is set as a triggering instant only when
the interval between the two consecutive sampling instants
is rather small. The proposed strategy brings the following
two benefits. (1) The self-triggered manner avoids continuous
monitoring or periodic sampling, resulting in a lower sensing
cost of the sensor than the one in [5], [6]. (2) Different
from the conventional self-triggered MPC, the triggering
instant is determined by using the true predictive state
error at the sampling instants, leading to larger triggering
intervals. Moreover, the triggering condition is adaptive to
the triggering interval, which further enlarges the triggering
interval compared with the results obtained by [5], [6].

This paper is organized as follows. Section II presents the
system description and preliminaries. Section III gives the
main results, including the design of the specific iterative
self-triggered MPC strategy, and the feasibility and stability

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 1281

20
21

 6
0t

h 
IE

EE
 C

on
fe

re
nc

e 
on

 D
ec

is
io

n 
an

d 
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

36
74

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 01,2022 at 14:37:07 UTC from IEEE Xplore.  Restrictions apply. 



analysis. In Section IV, an illustrative example is shown to
verified the effectiveness. Section V concludes this paper.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the following continuous-time nonlinear system
with additive disturbance

ẋ(t) = f(x(t), u(t)) + w(t), t ≥ t0 (1)

where x(t) ∈ Rn and u(t) ∈ U ⊆ Rp denote the state and
the control input, respectively, w(t) ∈ W = {w ∈ Rn :
‖w‖P ≤ ρ, ρ > 0} is the bounded disturbance with ‖w‖P =√
wTPw and P > 0 being a positive definite matrix, and t0

represents the initial time. U is a compact set and contains the
origin as an interior point. The function f : Rn × U → Rn
is twice continuously differentiable satisfying f(0, 0) = 0,
and is Lipschitz continuous in Rn with a Lipschitz constant
Lf > 0 depending on the weighted matrix P , i.e., ∀x, y ∈
Rn, it holds that

‖f(x, u)− f(y, u)‖P ≤ Lf‖x− y‖P . (2)

The nominal system of the system (1) is obtained by
letting w(t) ≡ 0,

˙̂x(t) = f(x̂(t), û(t)). (3)

The linearization of the system in (1) around the origin is
represented as

ẋ(t) = Ax(t) +Bu(t) + w(t) (4)

where A = ∂f/∂x(0, 0) and B = ∂f/∂u(0, 0). For system
(4), the following standard assumption is given.

Assumption 1 ([13]): For system (4), there exists a feed-
back control law u(t) = Kx(t) such that AK = A+BK is
Hurwitz.

Based on Assumption 1, the following lemma, which plays
an important role in the feasibility and stability analysis, is
given.

Lemma 1 ([5], [13]): Suppose that Assumption 1 holds.
Given two positive definite matrices Q and R, there exists a
positive definite matrix P , a constant ε > 0 and a feedback
gain K, satisfying

V̇ (x(t))|ẋ(t)=f(x(t),Kx(t)) ≤ −‖x(t)‖2Q∗ (5)

and Kx ∈ U for all x ∈ Ω, where V (x) = ‖x‖2P , Ω = {x ∈
Rn : V (x) ≤ ε2}, and Q∗ = Q+KTRK.

III. MAIN RESULTS

In this section, the iterative self-triggered MPC strategy is
designed, followed by the feasibility and stability analysis.

A. Iterative Self-Triggered MPC

The schematic block diagram of the iterative self-triggered
MPC strategy is depicted in Fig.1 and the overview is
stated as follows. The smart sensor consists of an iterative
self-triggered mechanism (ISTM) and a sensor. The ISTM
determines the sampling instants of the sensor on the one
hand, and determines the transmission (triggering) instant of
the sampled state on the other hand. If the triggering instant

is updated, the OCP is solved by the controller based on the
current sampled state. Otherwise, the smart sensor continues
to calculate the next sampling instant and checks whether or
not to update the triggering instant.

In the following parts, we formulate the OCP, design
the adaptive event-triggered condition, and based on which
derive the ISTM.

Plant

Controller

Actuator

Smart 
Sensor

௞௠ሻݐሺݔ

;ݏො∗ሺݑ௞ሻݐሺݔ ௞ሻݐ

ISTM

Sensor

Transmitter

Fig. 1. The implementation of the iterative self-triggered MPC strategy

1) OCP: Denote by tk, k ∈ N the triggering instants when
the OCP is solved. The cost function is defined as:

J(x̂(s; tk),û(s; tk)) = ‖x̂(tk + T ; tk)‖2P

+

∫ tk+T

tk

(‖x̂(s; tk)‖2Q + ‖û(s; tk)‖2R)ds, (6)

where T is the prediction horizon. û(s; tk) is the predicted
control input trajectory and x̂(s; tk) is the corresponding
predicted state trajectory based on (3), where s ∈ [tk, tk+T ].
Q,R and P are all po weighted matrices. With the above
descriptions, the OCP is then formulated as follows:

min
û(s;tk)

J(x̂(s; tk), û(s; tk))

s.t. ˙̂x(s; tk) = f(x̂(s; tk), û(s; tk)), x̂(tk; tk) = x(tk) (7a)
û(s; tk) ∈ U (7b)
x̂(tk + T ; tk) ∈ Xf , (7c)

where s ∈ [tk, tk + T ], and Xf = {x ∈ Rn : ‖x‖P ≤ ε2
f}

is the terminal state constraint set with 0 < εf < ε. The
optimal control input û∗(·; tk) is generated by solving the
above OCP, and the corresponding optimal state trajectory is
denoted by x̂∗(·; tk). The optimal cost for the OCP at tk is
then denoted by J∗(x(tk)) = J(x̂∗(s; tk), û∗(s; tk)).

2) Adaptive event-triggered condition: Since the pre-
dicted state trajectory is generated based on the nominal
model (3), there is an error between the true and the nominal
state, which may result in the infeasibility of the OCP if the
triggering interval is too large. To tackle this issue, we design
the following adaptive event-triggered condition to determine
the triggering instants.

‖x(s)− x̂∗(s; tk)‖P = (ε− εf )e−Lf (tk+T−s)

s− tk = T
(8)

where s > tk. Only when either of the above condition is
satisfied, the event is triggered and the triggering instant is
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updated to tk+1 = s. The OCP is solved again utilizing the
state x(tk+1) as the initial condition.

Observe that the above triggering condition depends on
the current measurement x(s; tk), which requires continuous
monitoring of the state, leading to high-cost sensing. Hence,
this condition is not suitable for practical implementation.

Remark 1: Compared with the triggering conditions with
a constant triggering threshold in [5], [6], the triggering
threshold in condition (8) increases with respect to the
triggering interval (s− tk), enjoying lower conservativeness.

3) Self-triggered sampling: The self-triggered mechanism
is an effective way to avoid continuous monitoring, but large
conservativeness will be brought because only the state at
triggering instant and the upper bound of the disturbance are
used. To overcome the shortcoming of the conventional self-
triggered mechanism, we combine the ideas of the event-
and self-triggered mechanism to propose the ISTM. The
idea of the self-triggered sampling mechanism is depicted in
Fig. 2. We iteratively employ the conventional self-triggered
mechanism to determine the next sampling instant. One may
notice that multiple samplings are included between two
consecutive triggering instants. That is, the conservativeness
is reduced compared with the conventional self-triggered
mechanism via the utilization of the actual predicted state
error and the increasing triggering threshold.

௞ݐ ௞ଵݐ௞ାଵݐ ௞ଶݐ ௞ଷݐ ௞ସݐ ௞ହݐ ௞଺ݐ ௞଻ݐ

predicted	error

Triggering
	threshold

Self-triggered 
mechanism

Fig. 2. Basic idea of self-triggered sampling mechanism

Now, we derive the iterative self-triggered condition in-
spired by (8) as follows. Let tmk (k,m ∈ N) be the mth
sampling instant after tk and set t0k = tk. We design the
following triggering condition that will be employed at each
sampling instant.

ρ

Lf

[
eLf (tk+T−tmk ) − eLf (tk+T−tm+1

k )
]

+ ‖x(tmk )− x̂∗(tmk ; tk)‖P eLf (tk+T−tmk ) = ε− εf . (9)

As shown in Fig. 2, at each sampling instant tmk , the smart
sensor samples the current state x(tmk ) to determine the next
sampling instant tm+1

k according to (9). If tm+1
k −tmk is lower

than a prespecified constant σ, we set tk+1 = tmk as the next
triggering instant.

With the above descriptions, the next triggering instant
tk+1 is determined as follows.

tk+1 =

{
tmk , if tm+1

k − tmk < σ

tk + T, otherwise tm+1
k ≥ tk + T ,

(10)

where σ > 0 is the minimum sampling interval.
The overall iterative self-triggered MPC strategy is demon-

strated by Algorithm 1.

Algorithm 1: Iterative Self-Triggered MPC Algorithm
Initialization: Initial state x(t0); weighted matrices Q,
R, and P ; parameters σ, ε, and εf ; prediction horizon
T .

1: At any sampling instants tmk , k ∈ N, the smart sensor
samples the state x(tmk ) to determine the next sampling
instant tm+1

k via (9);
2: If tm+1

k − tmk < σ or tm+1
k > tk + T , set tk+1 = tmk or

tk+1 = tk + T according to (10), k = k + 1,m = 0 and
solve the OCP to obtain û∗(s; tk);

3: Apply û∗(s; tk) to the system (1);
4: Set m = m+ 1 and go to step 1.

B. Feasibility Analysis
The feasibility means that the solution of the OCP in (7)

exists at each triggering instant tk, provided that the OCP
admits a solution at t0. First, we give a lemma that formulates
the upper bound of the state error between the actual state
and the predicted one.

Lemma 2: If the nominal system (3) and the perturbed
one (1) are controlled by the same control input û∗(s; tk),
then the state error between x(s) and x̂∗(s; tk) is bounded
by

‖x(s)− x̂∗(s; tk)‖P ≤
ρ

Lf

(
eLf (s−s̄) − 1

)
+ ‖x(s̄)− x̂∗(s̄; tk)‖P eLf (s−s̄) (11)

where s̄ ≥ tk.
Proof: From (1) and (3), we obtain

‖x(s)− x̂∗(s; tk)‖P

= ‖x(s̄) +

∫ s

s̄

f(x(τ), û∗(τ ; tk)) + w(τ)dτ

− x̂∗(s̄; tk)−
∫ s

s̄

f(x(x̂∗(τ ; tk), û∗(τ ; tk))dτ‖P

≤ ‖x(s̄)− x̂∗(s̄; tk)‖P + ρ(s− s̄)

+

∫ s

s̄

Lf‖x(τ)− x̂∗(τ ; tk)‖P dτ.

Using the Gronwall-Bellman inequality yields

‖x(s)− x̂∗(s; tk)‖P
≤ ρ

Lf

(
eLf (s−s̄) − 1

)
+ ‖x(s̄)− x̂∗(s̄; tk)‖P eLf (s−s̄).

This proof is completed.
Based on Lemma 2, we can obtain a lower bound of the

triggering interval, which is stated in the following lemma.
Lemma 3: For the system (1), if the triggering instants

sequence tk, k ∈ N are generated by Algorithm 1 and the
prediction horizon is chosen such that

T ≥ 1

Lf
ln
Lf (ε− εf )

ρ
(12)
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is fulfilled then the triggering interval is lower bounded
by δ, that is, infk∈N{tk+1 − tk} ≥ δ, where δ :=
1
Lf

ln ρeLfT

ρeLfT−Lf (ε−εf )
.

Proof: According to (10), the first sampling instant t1k
after tk may be the latest triggering instant. In other words,
tk+1 ≥ t1k always holds. Substituting t0k = tk into (9), we
have

ρ

Lf
(eLfT − eLf (tk+T−t1k)) ≤ ε− εf .

Using the condition in (12), we have

tk+1 − tk ≥ t1k − tk ≥
1

Lf
ln

ρeLfT

ρeLfT − Lf (ε− εf )
.

This completes the proof.
The recursive feasibility is shown by the induction princi-

ple, therefore, the initial feasibility is assumed at first. Recall
that the definition of the feasible set in [14] is X={x(t0) ∈
Rn: the OCP admits a solution for a given T}

Assumption 2 ([5]): The prediction horizon is chosen
such that X 6= ∅ and x(t0) ∈ X .

Theorem 1: Consider the system (1) with Assumptions 1
and 2. Algorithm 1 is recursively feasible if the minimum
triggering interval satisfies

δ ≥ λ̄(P )

λ(Q∗)
ln
ε2

ε2
f

(13)

where λ̄(P ) is the maximum eigenvalue of P and λ(Q∗) is
the minimum eigenvalue of Q∗.

Proof: First, we construct a feasible solution candidate
at tk+1 based on the optimal solution û∗(s; tk) at tk as:

ũ(s; tk+1) =

{
û∗(s; tk), s ∈ [tk, tk + T ],

Kx̃(s; tk+1), s ∈ [tk + T, tk+1 + T ]
(14)

where the state trajectory x̃(s; tk+1), s ∈ [tk+1, tk+1 +
T ] is subject to the nominal system dynamics (3) with
x̃(tk+1; tk+1) = x(tk+1). In the remainder of this proof,
we need to show that ũ(s; tk+1) is a feasible solution for the
OCP at tk+1, which is equivalent to proving that the control
input constraint in (7b) and the terminal state constraint and
(7c) are satisfied.

To begin with, we show that the following inequality holds
based on the condition in (9)

‖x(tk+1)−x̂∗(tk+1; tk)‖P ≤ (ε− εf )e−Lf (tk+T−tk+1) (15)

From Lemma 2, we have

‖x(tk+1)− x̂∗(tk+1; tk)‖P ≤
ρ

Lf

(
eLf (tk+1−tmk ) − 1

)
+ ‖x(tmk )− x̂∗(tmk ; tk)‖P eLf (tk+1−tmk ). (16)

By virtue of (9) and the fact that tk+1 ≤ tm+1
k , we obtain

‖x(tmk )− x̂∗(tmk ; tk)‖P eLf (tk+1−tmk )

+
ρ

Lf

(
eLf (tk+1−tmk ) − 1

)
≤ (ε− εf )e−Lf (tk+T−tk+1).

(17)

Combining (16) and (17), we obtain (15).
In the sequel, the satisfaction of the constraints is proved.
• x̃(s; tk+1) ∈ Xf : The core of proving the satisfaction

of the terminal state constraint is to derive the upper
bound of the error between x̃(s; tk+1) and x̂∗(s; tk) for
s ∈ [tk+1, tk + T ]. First, due to the same control input
û∗(s; tk) being applied during s ∈ [tk, tk+T ], we obtain

‖x̃(s; tk+1)− x̂∗(s; tk)‖P

= ‖x̃(tk+1; tk+1) +

∫ s

tk+1

f(x̃(τ ; tk+1), ũ(τ ; tk+1))dτ

− x̂∗(tk+1; tk)−
∫ s

tk+1

f(x̂∗(τ ; tk), û∗(τ ; tk))dτ‖P

≤ ‖x̃(tk+1; tk+1)− x̂∗(tk+1; tk)‖P

+

∫ s

tk+1

Lf‖x̃(τ ; tk+1)− x̂∗(τ ; tk)‖P

≤ ‖x(tk+1)− x̂∗(tk+1; tk)‖P eLf (s−tk+1) (18)

where the triangle inequality and the Gronwall-Bellman
inequality are used. By virtue of (15), we obtain
‖x(tk+1)− x̂∗(tk+1; tk)‖P = (ε−εf )e−Lf (tk+T−tk+1).
Then, substituting s = tk + T into (18), one can obtain

‖x̃(tk + T ; tk+1)− x̂∗(tk + T ; tk)‖P ≤ ε− εf . (19)

Since x̂∗(tk + T ; tk) ∈ Xf , one obtains ‖x̃(tk +
T ; tk+1)‖P ≤ ε. In this case, the state-feedback Kx
is used. Recalling Lemma 1, we have V̇ (x̃(s; tk+1)) ≤
−‖x̃(s; tk+1)‖Q∗ ≤ −λ(Q∗)/λ̄(P )V (x̃(s; tk+1)). Uti-
lizing the comparison principle [15], we obtain

V (x̃(s; tk+1)) ≤ ε2e
−λ(Q∗)

λ̄(P )
(s−tk−T )

. (20)

Thus, we have ‖x̃(s; tk+1)‖P ≤ ε, ∀s ∈ [tk+T, tk+1 +
T ]. Substituting s = tk+1 + T into (20) results in
V (x̃(tk+1 + T ; tk+1)) ≤ ε2e−λ(Q∗)/λ̄(P )(tk+1−tk) ≤
ε2e−λ(Q∗)/λ̄(P )δ . Considering the condition in (13), one
can obtain V (x̃(tk+1 + T ; tk+1)) ≤ ε2

f , i.e., x̃(tk+1 +
T ; tk+1) ∈ Xf .

• ũ(s; tk+1) ∈ U : For s ∈ [tk+1, tk + T ], ũ(s; tk+1) =
û∗(s; tk) ∈ U . For s ∈ [tk +T, tk+1 +T ], ũ(s; tk+1) =
Kx̃(s; tk+1). Then, ũ(s; tk+1) ∈ U , ∀s ∈ [tk+T, tk+1+
T ] follows from Lemma 1.

This completes the proof.

C. Stability analysis

In this section, the stability of the closed-loop system
under the implementation of Algorithm 1 is analyzed. Specif-
ically, we will prove the closed-loop system is regional Input-
to-State practically Stable (ISpS) [16].

Theorem 2: Suppose that Assumptions 1 and 2 hold, the
conditions in (12) and (13) are fulfilled. Then, the closed-
loop system is ISpS in X under Algorithm 1.

Proof: According to [16, Definition 4], one should
prove that the system allows a ISpS-Lyapunov function
in X . First, we set V (x(t)) = J(x̃(s; t), ũ(s; t)) as the
Lyapunov function candidate. In particular, if t = tk, we
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set V (x(tk)) = J(x̂∗(s; tk), û∗(s; tk)). In what follows, we
show that V (x(t)) is an ISpS-Lyapunov function, that is, the
following hold

α1(‖x(t)‖) ≤ V (x(t)) ≤ α2(‖x(t)‖) (21)

V̇ (x(t)) ≤ −α3(‖x(t)‖) + β(ρ) + c (22)

for all x(s; t) ∈ X , t ∈ [tk, tk + T ], where α1, α2 and α3

are three K∞ functions, β is a K function and c > 0 is a
constant.

We first consider t = tk. The lower bound of V (x(tk))
can be easily obtained and is omitted here. From Lemma 1,
integrating inequality (5) from tk to tk + T yields

‖x̂∗(tk + T ; tk)‖2P − ‖x̂∗(tk; tk)‖2P

≤ −
∫ tk+1

tk

(‖x̂∗(τ ; tk)‖2Q + ‖û∗(τ ; tk)‖2R)dτ. (23)

Substituting (23) into (6) yields V (x(tk)) ≤ ‖x̂∗(tk; tk)‖2P ≤
λ̄(P )‖x(tk)‖2 , α̃2(‖x(tk)‖) for all x(tk) ∈ Ω. Then,
we follow the similar idea in [16, Lemma 4] to obtain the
upper bound of V (x(tk)) in X . There exist a V̄ such that
V (x(tk)) ≤ V̄ , ∀x(tk) ∈ X . Define a set Br = {x ∈ Rn :
‖x‖ ≤ r} ⊂ Xf . Let θ = max(1, V̄

α2(r) ), one can obtain
V (x(tk)) ≤ α2(‖x(tk)‖) where α2(‖x‖) = θα̃2(‖x‖).

It remains to show that (22) holds. The derivative of the
Lyapunov function candidate is defined as

V̇ (x(tk)) , limh→0+

V (x(tk + h))− V (x(tk))

h
. (24)

Denote the difference of the cost function between two time
instants tk and tk + h by ∆V (x(tk)) = V (x(tk + h)) −
V (x(tk)), then we have (25) below.

∆V (x(tk))

= −
∫ tk+h

tk

(‖x̂∗(τ ; tk)‖2Q + ‖û∗(τ ; tk)‖2R)dτ︸ ︷︷ ︸
∆1

+

∫ tk+T

tk+h

(‖x̃(τ ; tk + h)‖2Q − ‖x̂∗(τ ; tk)‖2Q)dτ︸ ︷︷ ︸
∆2

+

∫ tk+h+T

tk+T

(‖x̃(τ ; tk + h)‖2Q + ‖ũ(τ ; tk + h)‖2R)dτ︸ ︷︷ ︸
∆3

+ ‖x̃(tk + h+ T ; tk + h)‖2P − ‖x̂∗(tk + T ; tk)‖2P︸ ︷︷ ︸
∆3

. (25)

In the sequel, we consider ∆1, ∆2, and ∆3 one by one.

∆1 ≤ −λ(Q)

∫ tk+h

tk

‖x̂∗(τ ; tk)‖2dτ. (26)

Define constants LQ and LP such that ‖x‖2Q − ‖y‖2Q ≤
LQ‖x− y‖Q, ∀x, y ∈ X and ‖x‖2P −‖y‖2P ≤ LP ‖x− y‖P ,
∀x, y ∈ Ω. Then, combining (8), (13) and (18), ∆2 becomes

∆2 ≤
∫ tk+T

tk+h

LQ(‖x̃(τ ; tk + h)− x̂∗(τ ; tk)‖Q)dτ

≤ λ̄(
√
Q)

λ(
√
P )

∫ tk+T

tk+h

LQ(‖x̃(τ ; tk + h)− x̂∗(τ ; tk)‖P )dτ

≤ λ̄(
√
Q)

λ(
√
P )

∫ tk+T

tk+h

LQ‖x(tk + h)− x̂∗(tk + h; tk)‖P

× eLf (s−tk−h)dτ

≤ λ̄(
√
Q)LQρ

λ(
√
P )L2

f

(
eLfh − 1

) (
eLf (T−h) − 1

)
. (27)

By virtue of Lemma 1 and (19), it follows

∆3 =

∫ tk+h+T

tk+T

‖x̃(τ ; tk + h)‖2Q∗dτ

+ ‖x̃(tk + h+ T ; tk + h)‖2P − ‖x̂∗(tk + T ; tk)‖2P
≤ ‖x̃(tk + T ; tk + h)‖2P − ‖x̂∗(tk + T ; tk)‖2P
≤ LP

(
eLfh − 1

)
eLf (T−h). (28)

Substituting (26), (27) and (28) into (25) and considering
h→ 0+, we can obtain

V̇ (x(tk)) ≤ −α3(‖x(tk)‖) + β(ρ) + c (29)

where α3(‖x(tk)‖) = λ(Q)‖x(tk)‖2, β(ρ) =
λ̄(
√
Q)LQ

λ(
√
P )Lf

(
eLf (T ) − 1

)
ρ, and c = LPLfe

LfT .
When t ∈ (tk, tk + T ], (21) and (22) can be obtained by

using the same proof line as above, which are omitted in this
paper due to the page limit. The proof is completed.

IV. NUMERICAL EXAMPLE

This section validates the effectiveness of the proposed
iterative self-triggered MPC strategy by an example.

Consider a cart-spring-damper system [5] and its system
dynamics are formulated as{
ẋ1(t) = x2(t)

ẋ2(t) = − k
me
−x1(t)x1(t)− h

mx2(t) + u(t)
m + w(t)

m

(30)

where the component x1 and x2 are the displacement and
the velocity of cart, respectively. The mass of the cart is
m = 1.25kg, the stiffness of the nonlinear spring is k =
0.9N/m, and the viscous damping is h = 0.42N.s/m. u(t) is
the control input, and w(t) is the disturbance. The control
input constraint is set as U = {ui : −1 ≤ u ≤ 1}. The upper
bound of the disturbance is ρ = 0.001. The initial state is
x(t0) = (0.2,−0.2).

To implement Algorithm 1, we set the matrix Q =[
0.5 0
0 0.5

]
, R = 0.1. Using LQR to obtain the feed-back

gains K = [−1.5104,−2.5721]. The matrix P is calculated

as P =

[
1.2551 −0.6151
−0.6151 0.8054

]
, and the level set and the

terminal set are determined as ε = 0.2, εf = 0.18 by utilizing
the method in [13]. Thus, the Lipschitz constant is Lf = 2.5.
The minimum sampling interval is σ = 0.05s. The prediction
horizon is set as T = 3s according to Lemma 3 and Theorem
1.

The displacement, velocity, and control input of the cart
under Algorithm 1 are shown in Figs. 3-4, respectively. It can
be seen that the control input constraint is satisfied and the
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Fig. 3. The displacement and velocity of the cart.
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Fig. 4. The control input of the cart.

closed-loop system is ISpS. The triggering instants and the
sampling instants are illustrated in Fig. 5. It can be observed
that the sampling behaviour is taken place only at certain
sampling instants instead of periodically. Additionally, the
triggering interval is greater than δ = 0.45 according to
Lemma 3, and the computational load is reduced significantly
compared to the algorithm in [6].

V. CONCLUSION

In this paper, the self-triggered MPC for continuous-time
nonlinear systems with external disturbance has been inves-
tigated, and a novel iterative self-triggered MPC strategy
is proposed. With this strategy, the sensing cost has been
alleviated efficiently by avoiding continuous monitoring of
the state, and the computational load has been reduced by an
adaptive triggering condition. The feasibility of the proposed
strategy and stability of the system have been proved. The
effectiveness of the proposed strategy has been validated by
a simulation example.
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