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TABLE III
THE EVALUATION FOR THE PERFORMANCES OF THE PROPOSED MODELS (RMSE, CC)

TABLE IV
COMPARISONS AMONG PROPOSED MODEL AND OTHER CLASSIFICATION (RMSE, CC)

The results show that the proposed model improved the
estimation accuracy of knee-joint motion, ankle-joint motion,
and knee-ankle simultaneous motion. The mean RMSE of
individual joint motion and simultaneous motion is less than
5.3◦ and 6.4◦, which also indicates that the sEMG state-space
model has high estimation accuracy. Moreover, compared
with the conventional regression methods, the proposed model
exhibits the best performance in the experiments.

However, there are several important limitations related
to this study that need further development to be used in
rehabilitation medical robots under real-world conditions. This
study collected sEMG and joint angle signals with specific
motions from healthy subjects. It is not known how well this

model would work in a real scenario with unscripted free-form
activities performed by elderly or real patients. Although, there
is no considerable difference in the characteristics of sEMG
between subjects with disabilities and without disabilities, the
amplitude and frequency of the signal will still influence the
estimation accuracy. These conditions need to be investigated
before using the proposed sEMG state-space model for clinical
purposes.

V. CONCLUSION

We integrated forward dynamics into HMM, and employed
sEMG features (RMS, WC) to construct measure equa-
tions, and consequently formed a sEMG state-space model
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to estimate continuous angle of knee-joint and ankle-joint.
A normalization algorithm named IRL was used to reject the
errors of angle estimation with load. Compared with traditional
methods for angle estimation, the proposed model was shown
to improve the estimation accuracy. In the future, the proposed
sEMG state-space model will be utilized to estimate the
simultaneous and continuous motions of multiple joints by
the sEMG signals and can be applied to rehabilitation robots
and exoskeleton robots.
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