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Abstract: The autonomous maneuver decision of UA V plays an important role in future air combat, However, the strong 
compehhveness of the arr combat environment and the uncertainty of the opponent make it difficult to solve the optimal strategy. 
For these problems, we propose the algorithm based on deep reinforcement learning and game theory, which settles the matter 
that the existing methods cannot solve Nash equilibrium strategy in highly competitive environment, Specifically, 1 v l  air combat 
1s modeled as a two-player zero-sum Markov game, and a simplified two-dimensional simulation environment is constructed. 
We prove that the algorithm has good convergence through the simulation test, Compared with the opponent' s  strategy using 
DQN, our algonthm has better arr combat performance and is more suitable for the air combat game environment, 
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1 Introduction 

With the informatization development of modem military 
warfare, air combat game of UA V is the main means to 
master aerial supremacy. Compared with the manned 
aircraft, it greatly reduces the risk of performing missions 
and improves combat efficiency. The traditional UAV 
works by ground stations [ 1 ] ,  which is difficult to complete 
the accurate and timely control. Thus, it's of great 
significance to study the autonomous maneuver 
decision-making [2] capacity ofUAV. 

The modeling and calculating of traditional air combat 
maneuver autonomous decision are based on expert domain 
knowledge [3,4] . This method essentially relies on the 
experience of human experts, making it restrictive to 
completely cover all air combat situations due to the 
complex construction of the repository. In addition, methods 
based on supervised learning [5,6] have strong robustness 
and adaptability, but require a large amount of training data 
to obtain ideal maneuvering decision-making effects. 

Reinforcement learning [7] adopts trial and error to 
interact with the environment. It evaluates the result of 
maneuver selection by calculating the cumulative rewards 
after performing the action in the current state. Therefore, 
reinforcement learning not only considers the influence of 
the current state on the air combat situation, but also 
considers the long-term impact of maneuvering actions, 
which can well satisfy the uncertainty in the air combat 
process. Furthermore, reinforcement learning does not 
require training samples [8] and deals with the problem of 
maneuvering decision-making effectively. 

One of the challenges in applying reinforcement learning 
to air combat is how to store the action-value function. Due 
to the high-dimensional state space of air combat, traditional 
reinforcement learning algorithms suffer from a 
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dimensional explosion. The emergence of deep 
reinforcement learning [9] solves this problem, which 
combines deep neural networks and reinforcement learning. 
The nonlinear fitting ability of deep neural networks [ 10] is 
used to break through the limitations of finite-dimensional 
state input, making air combat UA V s more capable of 
dealing with complex problems. 

In the 1 vl air combat task, both the enemy and us update 
and adjust their strategies in time according to the battlefield 
situation. This is a dynamic game process, which is highly 
confrontational and involves complex conflicts of interest. 
This results in that air combat decision using the existing 
methods [ 1 1 ] cannot make specific decisions against the 
opponent's strategy in a highly competitive environment, so 
the win rate is low. Game theory [ 12] model expresses the 
interaction between the strategies of two sides, and acquires 
the optimal strategy of friend or foe. However, in traditional 
game, players have no ability to learn. They pay more 
attention to the strategies of other players at the current step. 
On this account, we combine the self-learning ability of 
reinforcement learning, the ability of neural network to 
handle high-dimensional states, and the idea of equilibrium 
decision in game theory, and apply them to air combat 
problems, aiming to obtain more intelligent and adversarial 
autonomous maneuvering decisions. 

In this paper, we propose the algorithm based on deep 
reinforcement learning and game theory to deal with strong 
competitiveness of the air combat environment and the 
uncertainty of the opponent. This algorithm solves the 
problem that the existing methods only unilaterally optimize 
its own interests without considering the adversarial factors 
in the air combat game. In addition, we model the 1 vl  air 
combat as a two-player zero-sum Markov game and 
construct a simplified two-dimensional simulation 
environment. We prove that our algorithm has good 
convergence through the simulation test. Compared with the 
opponent's strategy using DQN, our algorithm can more 
effectively make real-time decisions for the opponent's 
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of confrontation. With the increase of training times, it rises 
gradually and finally converges to about 60 percent. 

C Evaluating 

In order to evaluate strategies generated by the two 
algorithms, the two aircrafts fight against each other for 
10000 times. We define that the blue aircraft wins the game 
if it satisfies Eq. (7) for ten steps in one air battle, and it loses 
in other cases. The game results are recorded in Table 1 .  

It can b e  seen that the blue aircraft wins 6 1 1 3  times and 
the red wins 3887 times. The win rate of blue aircraft is 
6 1 . 1% by calculating, shows that it has a slight advantage 
over the red aircraft in the same adversarial environment. 
This proves that Modified DQN learns more intelligent and 
accurate maneuver strategies in strong confrontational 
environment, and it is more suitable for the air combat game 
compared with DQN. 

Table 1 :  Modified DQN vs DQN 

Result Modified DQN DQN 
Win 6 1 1 3  3887 
Lose 3887 6 1 13 

Win rate 6 1 . 1% 38.9% 

5 Conclusion 

In this paper, an air combat maneuver strategy algorithm 
is proposed based on deep reinforcement learning and game 
theory. In terms of the strong competitiveness of the air 
combat environment and the uncertainty of the opponent, 
this algorithm deals with the problem that the existing 
methods are difficult to solve Nash equilibrium strategy in 
highly competitive environment. Simulation results show 
that this algorithm has good convergence. Moreover, it 
possesses better air combat performance compared with the 
opponent's strategy using DQN. 

There are still some issues that have not been resolved. 
Our aircraft modeling and simulation environment is too 
simple and very different from real air combat scenarios. In 
addition, we only study the strategy problem of 1 v1 air 
combat, whereas the real-world scenario is many-to-many 
air combat, which involves more complex cooperative and 
adversarial conflicts. Our future work will be devoted to the 
more challenging problems of air combat maneuver 
decision. 
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