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ABSTRACT
Cluster consensus is investigated for multiple coupled harmonic oscillators under a weighted cooperative-
competitive network. Consensus protocols for three categories of communication networks are con-
structed by employing a weighted gain, and sufficient conditions for guaranteeing cluster consensus are
obtained. It is found that under the proposed protocols, the states of all oscillators can be guaranteed to
reach periodic orbits that are the same in frequency no matter which cluster the oscillators belong to. In
particular, cluster partitions here are not given a prior, but are determined by the communication topology
among oscillators. Numerical examples are given to validate the effectiveness of theoretical results.
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1. Introduction

Central to the distributed coordination of multi-agent systems
(MASs), the concept of consensus refers to the phenomenon
where agents therein converge to a common value guided by
local coordination (Ma et al., 2010; Ma & Zhang, 2010; Olfati-
Saber & Murray, 2004; Ren & Beard, 2005; Zhao et al., 2020;
Zheng & Wang, 2012). In recent years, it is observed that in
many practically meaningful scenarios such as foraging activi-
ties withmixed specifies (Dolby&Grubb, 1998), robotic sorting
(Prorok et al., 2017), etc., the agents in anMASmay be grouped
intomultiple clusters andmaintainmultiple steady states, where
consensus can be reached only for the agents within the same
cluster, thus the name ‘cluster consensus’. There are mainly
two types of cluster consensus of interest, that is, communica-
tion topology with cooperative interactions (Belykh et al., 2003;
Develer & Akar, 2021; Feng et al., 2014; Guo et al., 2020; Qin
et al., 2017; Qin & Yu, 2013; Wu et al., 2009; Yu & Wang, 2010;
Zhang & Ji, 2018; Zhao et al., 2019) and communication topol-
ogy with cooperative-competitive interactions (Ge et al., 2018;
Liu et al., 2020; Zhan & Li, 2018; Zhao et al., 2020), where all
the agents of the former are cooperative while for the latter the
agents can be both cooperative and competitive. To reflect this
kind of communication interactions, signed digraphs are often
used, where cooperative agents within the same cluster are con-
nected by non-negative edge weights, while competitive agents
from different clusters are connected by negative edge weights.

Cluster consensus has already attracted much attention. In
Yu and Wang (2010), based on the in-degree balance cou-
ple assumption, necessary and sufficient algebraic conditions
ensuring cluster consensus are given for single-integratorMASs.
These conditions are then improved in Qin and Yu (2013) by

CONTACT Yun-Bo Zhao ybzhao@ustc.edu.cn

replacing the hard-to-verify algebraic conditions by sufficient
graphic conditions. Under the acyclic partition assumption,
cluster consensus for general linear MASs is addressed regard-
less of coupling strength among agents. In Feng et al. (2014),
single-integrator dynamics in Yu and Wang (2010) is extended
to the double-integratormodel. In Ge et al. (2018), a generalised
cluster formation framework is proposed which covers (Qin
&Yu, 2013; Yu&Wang, 2010) as its special cases. The aforemen-
tioned works are based on two assumptions, i.e. topology graph
with acyclic partition and in-degree balance couple condition.
To relax these restrictive assumptions, weighted cooperative-
competitive graphs are introduced to describe communication
topologies in Zhan and Li (2018). Moreover, the topology is
divided into three types and corresponding protocols are pre-
sented for agents ensuring cluster consensus. Then, in Zhao
et al. (2020), a novel communication topology is introduced
for cluster consensus, where the concept of structure balance
(Altafini, 2013; Ma & Xie, 2020) and its criterion are extended,
without the need of augmented undirected graph in Zhan
and Li (2018).

Many practical MASs can be modelled as multiple coupled
harmonic oscillators (MCHOs). For example, for n objects of
equal mass linked by dampers with each object being equipped
with identical springs, their dynamics can be described by n
coupled harmonic oscillators (Ballard et al., 2010; Ren, 2008;
Zhang et al., 2018). In electrical networks, identical LC
oscillators coupled through passive impedances can also be
represented by coupled harmonic oscillators (Tuna, 2017;
Zhang et al., 2018). MCHOs are of great importance since each
harmonic oscillator is coupledwith its neighbour oscillators and
MCHOs have potential applications in multi-agent networks
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with repetitive movements, such as robots patrol and surveil-
lance (Ballard et al., 2010; Ren, 2008; Zhou et al., 2012). Despite
its importance, the cluster consensus of MCHOs has not been
fully considered. Indeed, most existing works are dependent
upon acyclic partition and balance couple graph assumptions
(Su et al., 2013; Zhang & Ji, 2018; Zhao et al., 2019), while
for weighted cooperative-competitive networks, existing works
consider only single-integrator dynamics (Liu et al., 2020; Zhan
& Li, 2018; Zhao et al., 2020).

In this work we consider cluster consensus of MCHOs
under weighted cooperative-competitive graphs. The weighted
cooperative-competitive graphs are categorised into three
types, i.e. interactively balanced, interactively sub-balanced and
interactively unbalanced. For each graph type, distributed
protocols are proposed. Different from the single-integrator
dynamics adopted in Zhan and Li (2018), where the statematrix
of the closed-loop system is just the Laplacian matrix, here,
the second-order linear harmonic oscillator model makes the
state matrix of the closed-loop system coupled with the Lapla-
cian matrix of the graph, and consequently brings difficulties
for the convergence analysis of the cluster consensus proto-
cols. To deal with these difficulties, two useful lemmas are
introduced in advance and sufficient conditions are given for
cluster consensus. It is proven that oscillators finally converge
to periodic orbits with the same frequency regardless of clus-
ters that they belong to. In addition, unlike existing studies
(Belykh et al., 2003; Feng et al., 2014; Ge et al., 2018; Guo
et al., 2020; Liu et al., 2020; Qin et al., 2017; Qin & Yu, 2013;
Wu et al., 2009; Yu & Wang, 2010; Zhang & Ji, 2018; Zhao
et al., 2019) where the cluster partitions are given a prior, we
here do not assume such information, and show that clus-
ter number is dependent on communication topology among
oscillators.

The contributions of this work are threefold. First, clus-
ter consensus of MCHOs under generic weighted cooperative-
competitive graphs is considered, which is rare to see in
existing works. Second, distributed protocols for three cate-
gories of communication graphs are proposed, and pinning
control is employed to realise cluster consensus for inter-
actively unbalanced graphs. Besides the above three graph
categories proposed in Zhan and Li (2018), in this paper,
a special case of the network where the augmented undi-
rected graph does not have directed cycles is also considered.
Finally, sufficient conditions for ensuring cluster consensus are
given.

The remainder of this paper is organised as follows. In
Section 2,we review relevant results on graph theory and formu-
late the problem of interest. In Section 3, we establish the main
results under the weighted cooperative-competitive networks.
Numerical simulations are presented in Section 4. Finally, the
paper is concluded in Section 5.

Notations. R
n is the set of n-dimensional real column vec-

tors and R
m×n is the set of m × n real matrices. In is n × n

identity matrix. 1n = (1, 1, . . . , 1)T . 0 is a matrix (vector) with
appropriate dimension. diag(a1, a2, . . . , an) is a diagonal matrix
with diagonal elements ai, i = 1, 2, . . . , n. Re(λ) is the real part
of λ. AT is the transpose of A. For A = (Aij) ∈ R

n×n and B =
(Bij) ∈ R

n×n, A ◦ B = (AijBij)ij.

2. Preliminaries and problem formulation

2.1 Preliminaries

Generally, a weighted cooperative-competitive network with n
agents can be described by a signed digraph G = (V , E ,A,D),
where V = {1, 2, . . . , n} is the node set, E ⊆ V × V is the edge
set,A = (aij) ∈ R

n×n is the non-negative adjacencymatrix, and
D = (dij) ∈ R

n×n is theweightedmatrix reflecting the coopera-
tive and competitive relations in a network. dij �= 0 ⇔ (j, i) ∈ E .
In particular, dij > 0 iff the relation between i and j is coop-
erative, dij < 0 iff the relation between i and j is competitive.
For A = (aij), aij ≥ 0 and aij > 0 ⇐⇒ (j, i) ∈ E . We assume
aii = 0, i ∈ V . Ni = {j ∈ V|(j, i) ∈ E} is the neighbour set of
agent i. L = (lij) is the Laplacian matrix of G = (V , E ,A,D),
satisfying lii = ∑n

j=1,j�=i aij, and lij = −aijdij, i �= j.
When relations among all agents are cooperative, i.e. dij ≥

0, we let dij = 1 for aij > 0 and dij = 0 for aij = 0, then G =
(V , E ,A,D) reduces to non-negative digraph G = (V , E ,A), in
which Laplacian Ls = (ls,ij) ∈ R

n×n is called standard Laplacian
with ls,ii = ∑n

j=1,j�=i aij, ls,ij = −aij, i �= j.
A directed pathPij inG = (V , E ,A,D) is a sequence of edges

(i,V1)(V1,V2) · · · (Vk, j), where i, V1, V2, ··· , Vk, j are distinct
nodes in V . The corresponding weighted product of Pij is Tij =
dV1idV2V1 · · · djVk . A directed cycle Ci is a directed pathPij with
i = j, and its weighted product is Ci = dV1idV2V1 · · · diVk .

Let Ĝ = (V , Ê , Â, D̂) be the bidirectional graph of G, where
Â = (âij) ∈ R

n×n, D̂ = (d̂ij) ∈ R
n×n, and

âij =
{
aji, (j, i) /∈ E , (i, j) ∈ E
aij, else

d̂ij =
{

1/dji, (j, i) /∈ E , (i, j) ∈ E
dij, else

The digraph G is interactively balanced if all Ci = 1 in Ĝ. If G
does not contain directed cycles and there is at least one Ci �=
1 in Ĝ, then G is interactively sub-balanced. G is interactively
unbalanced if G contains directed cycles and there exists at least
one Ci �= 1 in Ĝ.

The following two lemmas on algebraic graph theory are
useful.

Lemma 2.1 ((Zhan & Li, 2018)): There exists a nonsingular
matrix K = diag(k11, k12, . . . , k1n) such that K−1(A ◦ D)K =
A, i.e. K−1LK = Ls, if G = (V , E ,A,D) is interactively balanced
and has a spanning tree.

Lemma 2.2 ((Ren & Beard, 2005)): Let Ls be standard Lapla-
cian matrix in cooperative network G = (V , E ,A). Ls has a single
eigenvalue zero and all other eigenvalues have positive real parts
if and only if G has a spanning tree.

2.2 Problem formulation

Consider the following coupled harmonic oscillators,{
ṙi(t) = vi(t),
v̇i(t) = −αri(t) + ui(t), i = 1, 2, . . . , n,

(1)
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where ri(t) ∈ R represents the position of the ith oscillator,
vi(t) ∈ R is the velocity of the ith oscillator, α > 0 is the fre-
quency of the oscillators and ui(t) ∈ R is the control input to be
designed. We are interested to achieve cluster consensus with
the weighted cooperative-competitive networks described by
G = (V , E ,A,D).

Definition 2.3: For the system in (1), cluster consensus is
achieved if there exists distributed control protocol ui(t)(i =
1, 2, . . . , n) and cij ∈ R such that

lim
t→∞(rj(t) − cijri(t)) = 0,

lim
t→∞(vj(t) − cijvi(t)) = 0, i, j = 1, 2, . . . , n,

where cij is determined by the communication relations in
G = (V , E ,A,D).

Remark 2.1: In accordance with the definition of cluster con-
sensus (Qin&Yu, 2013), oscillators i and j are in the same cluster
iff cij = 1. Particularly, if cij = 1,∀i, j, then all oscillators achieve
consensus. Furthermore, oscillators achieve bipartite consensus
if cij = ±1, i, j = 1, . . . , n. In this sense, consensus and bipartite
consensus can be regarded as special cases of cluster consensus.

The following control protocol is proposed.

ui(t) =
∑
j∈Ni

aij
(
dijvj(t) − vi(t)

)
, i = 1, 2, . . . , n, (2)

Remark 2.2: Obviously, protocol (2) is distributed since it is
only based on the information of agent i and its neighbours.
In particular, if dij = 1 for (j, i) ∈ E , protocol (2) degenerates to
the standard consensus protocol in Ren (2008). If dij = ±1 for
(j, i) ∈ E , protocol (2) is reduced to the bipartite consensus pro-
tocol in Liu et al. (2018). It is worth noting that dij in this paper
is not limited to ±1, and hence protocol (2) is more general.

Applying protocol (2) to the system in (1), we have(
ṙ(t)
v̇(t)

)
=
(

0 In
−αIn −L

)(
r(t)
v(t)

)
� Q

(
r(t)
v(t)

)
, (3)

where r(t) = (r1(t), r2(t), . . . , rn(t))T , v(t) = (v1(t), v2(t), . . . ,
vn(t))T , and L is Laplacian matrix of G = (V , E ,A,D).

2.3 Useful lemmas

Before proceeding to the main results, we give the following
properties of state matrix Q in (3).

Lemma 2.4: Suppose G = (V , E ,A,D) is interactively balanced
and has a spanning tree. Let λ be an eigenvalue of Q, then
there exists an eigenvalue ξ of Ls, satisfying λ2 + λξ + α = 0.
Furthermore, if ϕ and η are, respectively, the left and right eigen-
vectors associated with λ, then, there exists an invertible matrix
P such that ϕ = (P−1)T(vTl , − λ

α
vTl )T and η = P(vTr , λvTr )T,

where vl and vr are the left and right eigenvectors associated with
ξ , respectively.

Proof: Since G = (V , E ,A,D) is interactively balanced and
has a spanning tree, by Lemma 2.1, there exists an invertible
matrix K = diag(k11, k12, . . . , k1n) such that K−1LK = Ls. Let
P = diag(K,K), then P is invertible, and

P−1QP =
(

0 In
−αIn −K−1LK

)
=
(

0 In
−αIn −Ls

)
. (4)

Suppose λ is an eigenvalue of Q and η is its right eigenvector,
i.e.Qη = λη. Then P−1QPP−1η = λP−1η. Combiningwith (4),
one obtains (

0 In
−αIn −Ls

)
P−1η = λP−1η.

Let η = ( xr
yr
)
, where xr ∈ R

n, yr ∈ R
n. Immediately one obtains(

0 In
−αIn −Ls

)(
K−1xr
K−1yr

)
= λ

(
K−1xr
K−1yr

)
,

i.e.

K−1yr = λK−1xr,

−αK−1xr − LsK−1yr = λK−1yr .
(5)

Therefore,

− αK−1xr − λLsK−1xr = λ2K−1xr . (6)

Clearly, λ �= 0 (otherwise, assume λ = 0, then by (5), one has
xr = yr = 0, and hence η = 0. This contradicts the fact that
η is an eigenvector associated with λ). Hence, by (6), one has
LsK−1xr = −λ2+α

λ
K−1xr , i.e.−λ2+α

λ
is an eigenvalue of Ls and

K−1xr is its right eigenvector. Let ξ = −λ2+α
λ

, vr = K−1xr , then
ξ is an eigenvalue of Ls, vr is a right eigenvector associated with
ξ . It is easy to know that λ2 + λξ + α = 0 and xr = Kvr , yr =
λKvr. Thus η = P(vTr , λvTr )T .

Similarly, assume ϕ is a left eigenvector associated with λ,
i.e. ϕTQ = λϕT , then ϕTPP−1QP = λϕTP. Let ϕ = (ϕT∗ ,ϕT

o )T ,
where ϕ∗ ∈ R

n and ϕo ∈ R
n. Combining with (4), by direct

calculations, one immediately gets ϕT∗ KLs = −λ2+α
λ

ϕT∗ K =
ξϕT∗ K. Therefore, KTϕ∗ is the left eigenvector associated with
ξ . Let vl = KTϕ∗, then ϕ∗ = (K−1)Tvl, ϕo = − λ

α
(K−1)Tvl.

Therefore, ϕ = (P−1)T(vTl , − λ
α
vTl )T . �

Lemma2.5: SupposeG = (V , E ,A,D) andμ is an eigenvalue of
Q. Then there exists eigenvalue γ of L, which satisfiesμ2 + μγ +
α = 0, Furthermore, suppose φ and ζ are the left and right eigen-
vectors associated with μ, respectively. Then φ = (βT

l , −μ
α
βT
l )T

and ζ = (βT
r , μβT

r )T, where βl and βr are the left and right
eigenvectors associated with γ , respectively.

Proof: It can be concluded by taking the similar procedures as
in Lemma 2.4. �

Remark 2.3: Compared with Lemma 2.4, where the relation-
ship of eigenvalues between Q and Ls is shown under interac-
tively balanced graph, here, in Lemma 2.5 the relationship of
eigenvalues between Q and Laplacian L is elaborated, irrespec-
tive of the graph characteristic.



INTERNATIONAL JOURNAL OF CONTROL 3347

3. Main results

In this section, the weighted cooperative-competitive network
G = (V , E ,A,D) is first classified into three types, i.e. inter-
actively balanced, interactively sub-balanced and interactively
unbalanced, and then cluster consensus is dealt with for these
three network types, respectively.

3.1 Interactively balanced network

Theorem 3.1: The system in (1) achieves cluster consensus with
protocol (2) if G = (V , E ,A,D) is interactively balanced and has
a spanning tree. Moreover, as t → ∞,

ri(t) → k1i
(
cos(

√
αt)wl

TK−1r(0)

+ 1√
α
sin(

√
αt)wl

TK−1v(0)
)
,

vi(t) → k1i
(
−√

α sin(
√

αt)wl
TK−1r(0)

+ cos(
√

αt)wl
TK−1v(0)

)
, i = 1, 2, . . . , n, (7)

where K = diag(k11, k12, . . . , k1n) is defined as in Lemma 2.4,
wl is a left eigenvector of Ls associated with eigenvalue 0 and
wl

T1n = 1.

Proof: Since G has a spanning tree, by Lemma 2.2, Ls has a
simple eigenvalue 0 and all other eigenvalues have positive real
parts. Without loss of generality, suppose ξ1 = 0, ξ2, . . . , ξn are
n eigenvalues of Ls, it then readily follows that Re(ξi) > 0, i =
2, 3, . . . , n. According to Lemma 2.4, the eigenvalues of Q are

λ1+ = √
αj, λ1− = −√

αj (j2 = −1);

λi+ =
−ξi +

√
ξ 2i − 4α

2
,

λi− =
−ξi −

√
ξ 2i − 4α

2
, i = 2, 3, . . . , n.

Then, there exists an invertible matrix R such that

R−1QR =
⎛
⎝

√
αj 0 0
0 −√

αj 0
0 0 J

⎞
⎠ , (8)

where J is the Jordan block with λi±, (i = 2, 3, . . . , n) on its
diagonal. Obviously, Re(λi+) < 0, Re(λi−) < 0, i = 2, 3, . . . , n.

Suppose lT1 , l
T
2 are the first and second rows of R−1; r1, r2 ∈

R
2n are the first and second columns of R, respectively. Then,

by (8), one immediately knows that l1 and r1 are left and right
eigenvectors ofQ associated with eigenvalue λ1+ = √

αj; l2 and
r2 are left and right eigenvectors ofQ associated with eigenvalue
λ1− = −√

αj, respectively. In addition, by definition, Ls1n = 0.
Obviously, there exists wl such that wl

TLs = 0 and wl
T1n = 1.

Therefore, by Lemma 2.4, one can derive that

ϕ1+ = diag((K−1)T , (K−1)T)

(
wl

T ,
1√
αj

wl
T
)T

,

η1+ = diag (K,K)
(
1nT ,

√
αj1nT

)T
;

ϕ1− = diag((K−1)T , (K−1)T)

(
wl

T , − 1√
αj

wl
T
)T

,

η1− = diag (K,K)
(
1nT , −√

αj1nT
)T

,

are left and right eigenvectors associated with λ1+ and λ1−,
respectively. Note that both λ1+ and λ1− are simple eigen-
values of Q, and hence their characteristic subspaces are
1-dimensional, say, l1 = 1

2ϕ1+, r1 = η1+; l2 = 1
2ϕ1−, r2 = η1−,

since R−1R = I2n and lT1 r1 = lT2 r2 = 1. By direct calculation,
one gets

lim
t→∞ eQt = R

⎛
⎝e

√
αtj 0 0
0 e−

√
αtj 0

0 0 0

⎞
⎠R−1

= e
√

αtjr1lT1 + e−
√

αtjr2lT2 ,

i.e.

lim
t→∞ eQt

=
(

cos(
√

αt)K1nwl
TK−1 1√

α
sin(

√
αt)K1nwl

TK−1

−√
α sin(

√
αt)K1nwl

TK−1 cos(
√

αt)K1nwl
TK−1

)
.

This together with (3) gives

r(t) →
(
cos(

√
αt)wl

TK−1r(0)

+ 1√
α
sin(

√
αt)wl

TK−1v(0)
)
K1n,

v(t) →
(
−√

α sin(
√

αt)wl
TK−1r(0)

+ cos(
√

αt)wl
TK−1v(0)

)
K1n, t → ∞.

By Lemma 2.4, K = diag(k11, k12, . . . , k1n) and K1n = (k11,
k12, . . . , k1n)T . Thus, (7) holds. Take cij = k1j

k1i , i, j = 1, 2, . . . , n.
It is obvious that k1i �= 0(i = 1, 2, . . . , n) only depends on inter-
action topology G. Therefore, cij is determined by G. According
to Definition 2.3, cluster consensus is achieved. �

Remark 3.1: (i) Theorem 3.1 gives the sufficient conditions
for ensuring cluster consensus under interactively balanced
network. It can be seen that states of all oscillators reach
periodic orbits with the same frequency

√
α/2π regardless

of cluster partitions.
(ii) From Theorem 3.1, one can see that if k1i = 1, ∀i =

1, 2, . . . , n, then cij = k1j
k1i = 1, ∀i, j = 1, 2, . . . , n, i.e. all har-

monic oscillators finally converge to the same cluster.
In this situation, traditional consensus is achieved, and
therefore cluster consensus is reduced to consensus in
Ren (2008). If k1i = ±1, then cij = ±1, i, j = 1, 2, . . . , n.
This implies that harmonic oscillators are separated into
two clusters, and oscillators in different clusters reach an
agreementwhose values are the same inmodulus but oppo-
site in sign. Under this circumstance, cluster consensus
degenerates to bipartite consensus in Liu et al. (2018).
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3.2 Interactively sub-balanced network

Theorem3.2: The system in (1) with protocol (2) achieves cluster
consensus if G = (V , E ,A,D) is interactively sub-balanced and
has a spanning tree.

Proof: since G is interactively sub-balanced, it does not contain
directed cycles. This means that the nodes in G can be relabelled
in a way that i< j for (i, j) ∈ E and Laplacian L is lower tri-
angular (Qin & Yu, 2013). This, together with the fact that G
has a spanning tree, implies that L has exactly one zero eigen-
value and other ones are positive. Without loss of generality,
suppose γ1 = 0, γ2 > 0, . . . , γn > 0 are eigenvalues of L. Then,
by Lemma 2.5, the eigenvalues of Q are

μ1+ = √
αj, μ1− = −√

αj, (j2 = −1)

μi+ =
−γi +

√
γ 2
i − 4α

2
, (1)

μi− =
−γi −

√
γ 2
i − 4α

2
, i = 2, 3, . . . , n. (9)

Therefore, there exists an invertible matrix S such that

S−1QS =
⎛
⎝

√
αj 0 0
0 −√

αj 0
0 0 J1

⎞
⎠ , (10)

where J1 is a Jordan block with μi±, i = 2, 3, . . . , n on its diago-
nal. Obviously, Re(μi+) < 0, Re(μi−) < 0, i = 2, 3, . . . , n. Sup-
pose that s1, s2 are the first and second columns of matrix S,
tT1 , t

T
2 are the first and second rows of matrix S−1, respectively.

Then t1 and s1 are the left and right eigenvectors of Q associ-
ated with eigenvalue μ1+ = √

αj, t2 and s2 are left and right
eigenvectors of Q associated with eigenvalue μ1− = −√

αj,
respectively. In addition, by Lemma 2.5,

φ1+ =
(

βT
l1,

1√
αj

βT
l1

)T
, ζ1+ =

(
βT
r1,

√
αjβT

r1

)T
,

φ1− =
(

βT
l1, − 1√

αj
βT
l1

)T
, ζ1− =

(
βT
r1, −√

αjβT
r1

)T
,

are, respectively, the left and right eigenvectors associated with
μ1+ and μ1−, where βl1 and βr1 are the left and right eigen-
vectors associated with γ1 = 0, and βT

l1βr1 = 1. Notice that
μ1+ and μ1− are simple eigenvalues and thus their character-
istic subspaces are 1-dimensional. Without loss of generality,
suppose t1 = 1

2φ1+, s1 = ζ1+, t2 = 1
2φ1− and s2 = ζ1−. By the

definition of matrix exponential function,

lim
t→∞ eQt = S

⎛
⎝e

√
αtj 0 0
0 e−

√
αtj 0

0 0 0

⎞
⎠ S−1

= e
√

αtjs1tT1 + e−
√

αtjs2tT2 .

This together with (3) yields that when t → ∞,

r(t) →
(
cos(

√
αt)βT

l1r(0) + 1√
α
sin(

√
αt)βT

l1v(0)
)

βr1,

v(t) →
(
−√

α sin(
√

αt)βT
l1r(0) + cos(

√
αt)βT

l1v(0)
)

βr1.

Since βr1 is a right eigenvector associated with eigenvalue 0,
Lβr1 = 0. Let βr1 = (β

(1)
r1 ,β(2)

r1 , . . . ,β(n)
r1 )T . Recalling that L is

lower triangular, it then follows that β
(1)
r1 �= 0 (if not, β

(i)
r1 =

0, i = 2, 3, . . . , n, and thus βr1 = 0. This contradicts the fact
that βr1 is an eigenvector). Without loss of generality, we
chooseβ

(1)
r1 = 1. Thenβ

(j)
r1 = ∑

k∈Nj
ajkdjkβ

(k)
r1 /

∑
k∈Nj

ajk, j =
2, 3, . . . , n. Obviously, β

(i)
r1 is determined by G = (V , E ,A,D).

Then, by (7), cluster consensus is achieved. �

Remark 3.2: Theorem 3.2 shows that for the interactively sub-
balanced network with a spanning tree, cluster consensus can
be reached by employing the protocol in (2). Compared with
the interactively balanced case in Theorem 3.1, where cluster
partition is only determined by dij, here, it depends on both aij
and dij.

3.3 Interactively unbalanced network

In order to achieve cluster consensus of MCHOs for inter-
actively unbalanced G, we introduce the following pinning
control.

Theorem 3.3: The system in (1) with protocol (2) and the
introduced pinning control achieves cluster consensus if G =
(V , E ,A,D) is interactively unbalanced and has a spanning tree.

Proof: Since G has a spanning tree, let’s set the spanning tree as
ST = (V , ET)with ET ⊂ E .Without loss of generality, rearrange
the indices of all the nodes such that i< j for (i, j) ∈ ET . Assume
that PET

1i ⊂ ST is a directed path from 1 to i. Then, in ET , PET
1i ,

∀i �= 1 is the only path from 1 to i. Let p1i be the weighted prod-
uct of PET

1i ⊂ ST . If G is interactively unbalanced, by definition,
G contains directed cycles and there exists at least one Ci �=
1 in Ĝ. Thus, there exists (j, i) ∈ E\ET such that p−1

1i dijp1j �=
1. Define �1 = {i : (j, i) ∈ E\ET , p−1

1i dijp1j �= 1}. Then, we can
divide oscillators in (1) into two categories based on whether
they are in �1, and introduce the pinning control to oscillators
in �1, i.e.

v̇i(t) = −αri(t) +
∑
j∈Ni

aij[dijvj(t) − vi(t)] + u∗
i (t), i ∈ �1;

v̇i(t) = −αri(t) +
∑
j∈Ni

aij[dijvj(t) − vi(t)], i /∈ �1,

(11)
where u∗

i (t) denotes the pinning control introduced to the ith
oscillator.

From the definition of interactively unbalanced graph, it fol-
lows that G contains directed cycles and there exists at least one
weight productCi �= 1 in Ĝ. Next, we will introduce the pinning
control according to weight products of directed cycles in Ĝ.
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Case I: all Ci > 0 in Ĝ. In this case, for i ∈ �1, we design
the pinning controller as

u∗
i (t) = −kivi(t), i ∈ �1, (12)

where ki = ∑
j∈Ni

ãij − lii, ãij = aijp−1
1i dijp1j if (j, i) ∈ E\ET ;

ãij = aij, otherwise. Apply (12) to the system in (11), then(
ṙ(t)
v̇(t)

)
=
(

0 In
−αIn −L̃

)(
r(t)
v(t)

)
,

where L̃ = (l̃ij),

l̃ij =

⎧⎪⎨
⎪⎩
∑
j∈Ni

aij|p−1
1i dijp1j|, i = j,

−aijdijsgn(p−1
1i dijp1j), i �= j.

Let H = diag(p11, p12, . . . , p1n) with p11 = 1. Then, H−1L̃H =
L̃s, where L̃s is the standard Laplacian. Taking the same proof
process as in Theorem 3.1, we obtain that oscillators in (1)
achieve cluster consensus.

Case II: there exists at least one Ci < 0 in Ĝ. Define �2 =
{j : (j, i) ∈ E\ET , p−1

1i dijp1j < 0}. For i ∈ �1, we design the pin-
ning controller as

u∗
i (t) = −kiivi(t) +

∑
j∈Ni∩�2

kijvj(t), i ∈ �1, (13)

where kii = ∑
j∈Ni

|ãij| − lii, kij = −aijdij[1 − sgn(ãij)](i �= j).
Applying (13) to the system in (11), one has(

ṙ(t)
v̇(t)

)
=
(

0 In
−αIn −L̃

)(
r(t)
v(t)

)
.

Repeating the same procedure as in Case I, we obtain that
oscillators in (1) achieve cluster consensus. �

Remark 3.3: For G = (V , E ,A,D) being interactively unbal-
anced and having a spanning tree, using protocol (2) only the
oscillators in (1) can be either convergent to zero or divergent,
but not necessarily achieving cluster consensus. The pinning
control is hence vital in this case.

Till now, cluster consensus for MCHOs has been achieved
under three different networks, i.e. interactively balanced, inter-
actively sub-balanced and interactively unbalanced, respec-
tively. Note that in the above three cases, Ĝ has directed cycles.
It would be interesting to investigate cluster consensus for oscil-
lators under networks where Ĝ does not have directed cycles. As
a special case of this, we will consider the network where G is a
spanning tree.

Corollary 3.4: The system in (1) with protocol (2) can achieve
cluster consensus if G = (V , E ,A,D) is a spanning tree.

Proof: If G is a spanning tree, then nodes in G can be rela-
belled in a way that i< j for (i, j) ∈ E . Obviously, G does not
contain directed cycles. Thus, Laplacian L is lower triangular.
Moreover, L has exactly one zero eigenvalue and other ones

are positive. By using the similar analysis after (9), one obtains
cluster consensus. �

Remark 3.4: Different from the three networks, i.e. interac-
tively balanced, interactively sub-balanced and interactively
unbalanced studied in Zhan and Li (2018), where Ĝ has directed
cycles, here a special case of the network that Ĝ does not have
directed cycles is considered.

4. Simulations

In this section, numerical examples are given to validate the
proposed theoretical results for cluster consensus.

Example 4.1: Consider a coupled harmonic oscillators sys-
tem composed of five harmonic oscillators with α = 1 in (1).
Communication interactions among them are expressed by
G1 = (V , E1,A1,D1) with A1 = (aij)5×5 and D1 = (dij)5×5,
where a21 = a43 = 1, a24 = 4, a32 = a53 = 2, d21 = 0.5, d23 =
−0.5, d32 = −2 and d43 = d53 = 1. Since node 2, 3 and 4
form a directed cycle and d32d43d24 = 1, G1 is interactively
balanced. By Figure 1, G1 has a spanning tree. Set r(0) =
(−6, 2,−3, 1, 5)T , v(0) = (5, 0,−5, 2,−1)T . Then cluster con-
sensus is achieved under protocol (2), as shown in Figure 2. The
oscillators go into three clusters, i.e. 1; 2; 3,4,5, and the state pro-
portion of three clusters is 2: 1: -2. In light of Theorem 3.1, K =
diag(k11, k12, k13, k14, k15) = diag(1, 12 ,−1,−1,−1), and c34 =
k14/k13 = 1, c45 = k15/k14 = 1, c12 = k12/k11 = 1

2 , c23 =
k13/k12 = −2, c13 = k13/k11 = −1. By Definition 2.3, oscilla-
tors 3, 4, 5 constitute a cluster, oscillators 1 and 2, respec-
tively, constitute a cluster. This is consistent with the simulation
results.

Example 4.2: Suppose the communication interactions among
the five oscillators in Example 4.1 are expressed by G2 =
(V , E2,A2,D2), with A2 = (aij)5×5 and D2 = (dij)5×5, where
a21 = 2, a32 = 1, a42 = 3, a43 = 4, a53 = 3, d21 = 2, d32 =
0.5, d42 = 1, d43 = −1 and d53 = −0.5. By Figure 3, there are
no directed cycles in G2, but in Ĝ2 node 2, 3 and 4 form a
directed cycle and d32d43d24 = −0.5 �= 1. So G2 is interactively
sub-balanced. Obviously, G2 has a spanning tree. Let r(0) =
(−3, 5,−1, 0, 1)T and v(0) = (0, 5, 3,−1,−5)T . Then cluster
consensus is achieved under protocol (2), as shown in Figure 4.

Figure 1. Interactively balanced topology graph G1.
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Figure 2. State trajectories of coupled harmonic oscillators in G1.

Figure 3. Interactively sub-balanced topology graph G2.

The oscillators go into four clusters, i.e. 1, 3; 2; 4; 5. In fact,
by Theorem 3.2, we have c13 = β3

r1/β
1
r1 = 1, c23 = β3

r1/β
2
r1 =

1
2 , c24 = β4

r1/β
2
r1 = 1

7 , c25 = β5
r1/β

2
r1 = − 1

4 , c34 = β4
r1/β

3
r1 =

2
7 , c35 = β5

r1/β
3
r1 = − 1

2 , and c45 = β5
r1/β

4
r1 = − 7

4 . i.e. oscilla-
tors 1 and 3 constitute a cluster, oscillators 2, 4 and 5 constitute
a cluster, respectively. In particular, if the directed edge (2, 4) in
G2 is deleted, then G2 is a spanning tree. In this case cluster con-
sensus is achieved under protocol (2), as shown in Figure 5. This
validates the effectiveness of Corollary 3.4.

Example 4.3: Consider the five oscillators in Example 4.1
with G3 = (V , E3,A3,D3), as shown in Figure 6, where A3 =
(aij) ∈ R

5×5, a15 = 3, a21 = 2, a32 = 1, a43 = 4, a53 = 3,
and D3 = (dij) ∈ R

5×5, d15 = −2, d21 = 2, d32 = 0.5, d43 =
−1, d53 = −1. By definition, G3 is interactively unbalanced,
and has a spanning tree. To ensure cluster consensus, a
pinning control is introduced as in Theorem 3.3. Clearly,
(5, 1) ∈ E\ET and p−1

11 d15p15 = 2 �= 1. Thus, node 1 ∈ �1.
By calculations, all weight products of directed cycles in Ĝ3
are positive, and d21d32d53d15 = 2 �= 1. Then, by case I in
Theorem 3.3, a pinning control u∗

1(t) = −3v1(t) is designed
based on (12). Assume r(0) = (−2, 1.5,−0.5, 1, 3)T and v(0) =
(0, 1, 2,−1,−2)T . Then, cluster consensus is achieved as shown
in Figure 7, where oscillators go into three clusters, i.e. 1, 3; 2;
4, 5.

Figure 4. State trajectories of coupled harmonic oscillators in G2.

Figure 5. State trajectories of coupled harmonic oscillators under a spanning tree.

Figure 6. Interactively unbalanced topology graph G3.

Next, we change weights in G3 and obtain G4 = (V , E3,A3,
D4), where D4 = (dij) and d15 = 2, d21 = 2, d32 = 0.5, d43 =
−1, d53 = −1. G4 is also interactively unbalanced. By cal-
culation, (5, 1) ∈ E\ET and p−1

11 d15p15 = −2 < 0, so node
5 ∈ �2. Since d21d32d53d15 = −2 < 0 in Ĝ4, by case II
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Figure 7. State trajectories with the pinning control in G3.

Figure 8. State trajectories with the pinning control in G4.

in Theorem 3.3, u∗
1(t) = −k11v1(t) + k15v5(t) = −3v1(t) −

12v5(t). Cluster consensus is achieved as shown in Figure 8.

5. Concluding remarks

Cluster consensus of coupled harmonic oscillators is stud-
ied for weighted cooperative-competitive networks. Distributed
control protocols are proposed for three kinds of weighted
cooperative-competitive networks, respectively. Based on them,
cluster consensus is achieved. Compared to conventional
consensus and bipartite consensus in multi-agent systems,
where only cooperative interactions and binary cooperative-
competitive interactions are considered, respectively, here
weighted cooperative-competitive interactions are taken into
consideration, representing a more realistic model for social
networks.
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