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Abstract—This article investigates the event-triggered dis-
tributed model predictive control (DMPC) for perturbed coupled
nonlinear systems subject to state and control input constraints.
A novel compound event-triggered DMPC strategy, including a
compound triggering condition and a new constraint tighten-
ing approach, is developed. In this event-triggered strategy, two
stability-related conditions are checked in a parallel manner,
which relaxes the requirement of the decrease of the Lyapunov
function. An open-loop prediction scheme to avoid periodic trans-
mission is designed for the states in the terminal set. As a
result, the number of triggering and transmission instants can
be reduced significantly. Furthermore, the proposed constraint
tightening approach solves the problem of the state constraint
satisfaction, which is quite challenging due to the external distur-
bances and the mutual influences caused by dynamical coupling.
Simulations are conducted at last to validate the effectiveness of
the proposed algorithm.

Index Terms—Coupled nonlinear systems, distributed model
predictive control (DMPC), parallel triggered.

I. INTRODUCTION

LARGE-SCALE systems that are mostly dynamically
coupled have been actively studied due to their appli-

cations in many practical systems, for example, autonomous
guided vessels, intelligent traffic systems, and water distribu-
tion systems [1], [2]. For such systems, conventional central
model predictive control, a powerful control technique in han-
dling system constraints and optimizing control performance,
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may fail to work due to the heavy computational load [1],
calling for a more efficient control strategy. Distributed model
predictive control (DMPC) is a promising strategy and the
main idea of which is to decompose the original overall
optimization problem into multiple individual optimal prob-
lems for the corresponding subsystems and then generate the
control signal by exploiting the local information of each sub-
system. As a consequence, the computational load can be
significantly released. Therefore, DMPC has received much
attention and found wide applications in recent years.

In DMPC for large-scale dynamically coupled systems, each
subsystem directly impacts the others through the dynamic
coupling, resulting in mutual disturbances. Such disturbances
bring challenges to the design of the DMPC algorithm.
In order to deal with the mutual influences, multitudinous
researches have been carried out (see, for example, [3]–[12]).
The design method of these work can be mainly categorized
into two classes. The first is to treat the coupled states as exter-
nal disturbances [3]–[7], and neglect them in the prediction
model, for example, stabilizing the decentralized MPC algo-
rithm in [3], tube-based MPC in [4], robust DMPC strategy
with a new robust constraint in [5], communication-based
DMPC approach in [6], and the novel cooperative DMPC
method that improves the global cost function of each local
controller in [7]. It is worth noting that there is no information
exchange between the subsystems as the predicted states of
each subsystem are always generated based on the nominal
state dynamics of the subsystem, leading to a simpler algo-
rithm design. However, information exchange helps to predict
the dynamic behaviors of each subsystem more accurately,
which is often beneficial to the control performance [13].

While in the second class, the information exchange is con-
sidered in predicting the future dynamic behaviors. To be
specific, for a subsystem, its control input sequence is gen-
erated by solving its optimization problem based on its own
information and that of its neighbors (a subset of other sub-
systems). In this way, the second design method is capable of
achieving better control performance and receives great atten-
tion (see, e.g., [8]–[12]). To guarantee the state and control
input constraints satisfaction, a tube-based DMPC approach
for the linear disturbance-free system is proposed in [8], and
a robust noniterative DMPC strategy for the perturbed lin-
ear system is developed in [9]. An iterative learning model
predictive control framework for dynamically coupled linear
multiagent systems is presented in [11]. To consider economic
performance in the context of the standard MPC, a distributed
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economic MPC algorithm is proposed in [12]. For coupled
nonlinear systems, two new constraints on the current pre-
dicted state and the previous predicted state are introduced
in the distributed optimization problem in [10] to guarantee
the DMPC algorithm feasibility and the closed-loop stability.
However, state constraints have not been considered in [10].
In fact, when considering the distributed implementation of
coupled systems, the mutual influences will inevitably be
encountered, which is a challenge for DMPC algorithm design.

Note that the aforementioned DMPC algorithms are based
on the time-triggered mechanism, which may be imprac-
tical in actual environments with limited computation and
communication resources, especially for large-scale systems.
Therefore, a more computation- and communication-efficient
control strategy is required for DMPC.

To deal with the above problem, event-triggered control is
introduced. Event-triggered control has potential advantages in
reducing communication resources because the control actua-
tion is triggered only when certain prescribed conditions are
violated rather than periodically. In this context, several types
of event-triggered control strategies have been proposed, such
as static event-triggered control [14], dynamic event-triggered
control [15], mixed event-triggered control [16], and adaptive
event-triggered control [17].

Motivated by the merit of event-triggered control, it is
of great interest to apply event-triggered control to DMPC
to form event-triggered DMPC as it can save communica-
tion and computation resources by reducing the amount of
solving the distributed optimization problem and exchanging
the local information. Recently, many event-triggered DMPC
approaches have been developed, which can be classified
according to system type (dynamically decoupled systems
and dynamically coupled systems). Specifically, for dynam-
ically decoupled systems, distributed periodic event-triggered
strategy [18], adaptive event-triggered strategy [19], and
dynamic event-triggered mechanism [20] have been proposed.
Nevertheless, to the best of our knowledge, for coupled
systems, very few results are reported with the exception
of [21] and [22], though most of the practical large-scale
systems are often comprised of dynamically coupled subsys-
tems. This is because the coupling influences increases the
difficulty of designing triggering strategy and analyzing system
performance.

Although event-triggered DMPC for coupled systems has
been studied in [21] and [22], there are some problems to be
solved.

1) The triggering conditions designed to ensure the
decrease of the Lyapunov function as time elapses
(see, e.g., [20]–[22]) are easily met due to the use of
many conservative inequalities especially in the presence
of external disturbances. As a result, the computation
resources cannot be saved effectively.

2) The dual-model strategy adopted in [18]–[22] requires
the state information and control inputs to be transmitted
periodically after the states enter the terminal set, result-
ing in a high communication load in many large-scale
networked control systems [23]–[25].

3) The control parameters designed for different sub-
systems, such as the prediction horizon and the

triggering threshold, are the same in the previous
works [21], [22], [26]. In this way, the designed trig-
gering conditions are relatively conservative due to the
neglect of different characteristics between the subsys-
tems.

4) Due to dynamic coupling, the conventional constraint
tightening approach [27], [28] to guarantee the satis-
faction of state constraint cannot work. As a result,
state constraints, which exist in multiple practical large-
scale processes, are not considered in most researches
on coupled systems [8], [10], [21], [22].

Motivated by the above discussions, this article investi-
gates event-triggered DMPC for perturbed coupled nonlinear
systems subject to state and input constraints, aiming at
designing an efficient event-triggered DMPC scheme to reduce
the computation and communication load and ensure the sat-
isfaction of constraints. The main contributions of our work
are as follows.

1) A compound event-triggered DMPC strategy is designed
for coupled nonlinear systems, which is computation
and communication efficient, and does not need to keep
the Lyapunov function decreasing compared with the
one [21], [22].

2) A new constraint tightening approach is developed for
the optimization problem. Compared with the results
in [10], [21], and [22] where the state constraints are
not considered, the approach in this work is capable of
guaranteeing the satisfaction of the state constraints even
in the presence of external disturbances.

3) Sufficient conditions for guaranteeing algorithm feasibil-
ity and closed-loop stability are derived, which enables
the separate design of the control parameters for each
subsystem, leading to lower conservative results.

The structure of this article is organized as follows.
Section II describes the research problem. Section III gives
the design of the compound event-triggered DMPC algorithm,
including the distributed optimization problem and the com-
pound triggering condition. The analysis of the algorithm
feasibility and the closed-loop stability is shown in Section IV.
Section V gives an illustrative example. Finally, Section VI
concludes this article.

Notations: Let R and N denote the real and nonnegative
integers, respectively, and R

n is the n-dimensional Euclidean
space. For a given matrix P, P > 0 means that P is positive
definite; λ(P) and λ̄(P) denote the minimum and maximum
eigenvalues of the matrix P, respectively; ‖P‖ denotes the
induced 2-norm of P. For a vector x, its Euclidean norm
is denoted by ‖x‖ := √

xTx and ‖x‖P := √
xTPx represents

the P-weighted norm. For two sets A,B ⊆ R
n, A ⊕ B :=

{a+b : a ∈ A, b ∈ B} denotes the the Minkowski addition set,
and A � B := {a : a + b ∈ A ∀b ∈ B} denotes the Pontryagin
difference set.

II. PROBLEM FORMULATION

Consider a networked control system with the structure
being depicted in Fig. 1, which is common and often used in
practice (see, for example, [23]–[25]). The structure includes
the plant that consists of multiple coupled subsystems, a cloud

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 26,2022 at 23:45:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KANG et al.: COMPOUND EVENT-TRIGGERED DMPC 3

Fig. 1. Structure of event-triggered DMPC for networked control systems.

computing platform that consists of multiple decomposed
controllers, and the networks between the local components
(e.g., sensors, event generators, and actuators) and the remote
controller. The entire executing procedure of the networked
control system is elaborated as follows.

1) Each sensor i measures the state periodically, and the
event generator i determines whether to transmit the
measured state to the remote controller i via the com-
munication network.

2) Each remote controller i solves an optimization problem
only when the current state of subsystem i is received.
The resultant optimal control inputs and the correspond-
ing states are transmitted to the actuator i via the
communication network.

Note that the information among the sensor i, the event gen-
erator i, and the actuator i is assumed to be shared. Similarly,
the information between various controllers in the cloud com-
puting platform is also assumed to be shared, which enables
the controller i to use the information of i’s neighbors in
formulating the optimization problem. In practical systems,
such information share can be realized in hardware without
requiring communication costs.

In the following part, the system model is described in
detail, and the problem to be investigated is elaborated.

The considered plant consists of M nonlinear discrete-time
subsystems, which are coupled through states. The dynamic
coupling between the subsystems is described by a directed
graph G = (M, E), where M = {1, . . . ,M} is the set of
nodes and E ⊂ M×M is the set of edges. The ith perturbed
discrete-time subsystem subject to state and input constraints
is given by

xi(k + 1) = fi(xi(k), ui(k))+
∑

j∈N u
i

gij(xj(k))+ wi(k) (1)

where i ∈ M, xi(k) ∈ Xi ⊂ R
ni and ui(k) ∈ Ui ⊂ R

mi denote
the state and control input of subsystem i, respectively, and
wi(k) ∈ Wi = {wi ∈ R

ni : ‖wi‖Pi ≤ ρi, ρi > 0} is the exter-
nal disturbance. The sets Xi and Ui are compact and contain
the origin. The symbol N u

i denotes the upstream neighbor of
subsystem i, that is, the components of j’s state appear in the
dynamics of subsystem i for all subsystem j, j �= i. On the
contrary, subsystem i is an downstream neighbor of j, that is,
i ∈ N d

j .

Moreover, the subsystem dynamics in (1) with fi(0, 0) = 0
and gij(0) = 0 satisfy the following assumption.

Assumption 1: fi and gij are local Lipschitz continuous with
two constants Lfi and Lgij , respectively. That is ∀(ς, ϕ, ζ, ν) ∈
Xi × Xi × Xj × Xj, i ∈ M, and j ∈ N u

i we have

‖fi(ς, u)− fi(ϕ, u)‖Pi
≤ Lfi‖ς − ϕ‖Pi

(2)∥∥gij(ζ )− gij(ν)
∥∥

Pi
≤ Lgij‖ζ − ν‖Pi

(3)

where Pi is the weighted matrix.
Remark 1: Unlike the work in [22], where the global

Lipschitz constants are exploited, this article is allowed to use
the local Lipschitz constants due to the state constraints. As a
result, conservatism is reduced. Moreover, note that the local
Lipschitz constant Lfi is dependent on matrix-weighted Pi, we
can use the same technique (change another matrix weighted)
as in [29] to further reduce conservatism.

Based on the subsystem dynamics (1), the overall con-
strained coupled system can be expressed as the catenated
vector form

x(k + 1) = F(x(k), u(k))+ w(k)

= f (x(k), u(k))+ g(x(k))+ w(k) (4)

where x = [xT
1 , . . . , xT

M]T ∈ X ⊆ R
n, X = X1 ×

· · · × XM , n = ∑
i∈M ni, and u = [uT

1 , . . . , uT
M]T ∈

U ⊆ R
m, U = U1 × · · · × UM , m = ∑

i∈M mi, and
w = [wT

1 , . . . ,wT
M]T ∈ W ⊆ R

n, W = W1 × · · · × WM .
Furthermore, f (x, u) = [f1(x1, u1)

T , . . . , fM(xM, uM)
T ]T and

g(x) = [
∑

j∈N u
1

g1j(xj)
T , . . . ,

∑
j∈N u

M
gMj(xj)

T ]T .
To stabilize the closed-loop system inside a neighborhood

of the origin, a linear local controller whose design depends on
the linearization of (1) is adopted. Furthermore, the terminal
set, where the local controller will be used, can be defined
based on the linearization of (4). To that end, the linearization
of (1) and (4) is introduced.

The linearized dynamics of subsystems i around the origin
is denoted as

xi(k + 1) = Aiixi(k)+ Biui(k)+
∑

j∈N u
i

Aijxj(k)+ wi(k) (5)

where Aii = ∂fi/∂xi(0, 0), Aij = ∂gij/∂xj(0) for j ∈ N u
i ,

and Bi = ∂fi/∂ui(0, 0). The linearized dynamics of (4) are
formulated as

x(k + 1) = Ax(k)+ Bu(k)+ w(k) (6)

where A = ∂F/∂x(0, 0), B = ∂f /∂u(0, 0).
Assumption 2: For each linearized subsystem in (5), there

exists a feedback controller ui(k) = Kixi(k) such that Asi =
Aii + BiKi and Ao = A + BK are both Schur, where K =
diag(K1, . . . ,KM).

The remainder of this section states the main research
objective of this work.

From the executing procedure of the networked control
system shown in Fig. 1, the consumption of the communica-
tion and computation resources is related to the frequencies
of transmitting data and solving the optimization problem.
Therefore, the main objective is to design an event-triggered
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DMPC strategy to reduce the number of triggering instants,
thereby reducing communication and computation load.

Remark 2: Note that the controller of each subsystem is
placed at local side in [21] and [22], but at remote side in
Fig. 1. Such difference leads to two influences as follows.

1) The information exchange between different subsystems
in [21] and [22] requires the communication network.
However, such a requirement is not needed in Fig. 1
since the information exchange between remote con-
trollers is realized in hardware.

2) For each subsystem i, the information transmission from
the controller i to its local components does not require
the use of communication resources in [21] and [22],
but the control structure in Fig. 1 does.

III. COMPOUND EVENT-TRIGGERED DMPC

In this section, the optimization problem of each subsystem
is formulated first, and then derive the compound triggering
conditions based on feasibility and stability. The overall event-
triggered DMPC algorithm is presented at the end.

A. Optimization Problem

Under the event-triggered DMPC framework, all controllers
are activated asynchronously, since the triggering instants
of each subsystem are distinct. As a result, for each con-
troller i, the actual state information of its upstream neighbors
j(j ∈ N u

i ), which is beneficial to control performance, is not
available.

For each subsystem i, let kr
i , r ∈ N denote its rth trig-

gering instant. To reject the mutual influences, each sub-
system i should presume its upstream neighbors’ behaviors.
Specifically, to that end, prior to each triggering instant kr

i ,
each controller i uses its upstream neighbors’ assumed states,
denoted by x̃j. Similarly, subsystem i shares its assumed state
x̃i to its downstream neighbors.

The local optimization problem Pi is defined by

Pi : min
ûi(kr

i )
Ji
(
x̂i
(
kr

i

)
, ûi
(
kr

i

)
,Ni

)

s.t. x̂i
(
kr

i + m + 1|kr
i

) = fi
(
x̂i
(
kr

i + m|kr
i

)
, ûi
(
kr

i + m|kr
i

))

+
∑

j∈N u
i

gij
(
x̃j(k

r
i + m|kr

i )
)
,m = 0, . . . ,Ni − 1

(7a)∥∥∥x̂i
(
kr

i + m|kr
i

)− x̄∗
i

(
kr

i + m|kr−1
i

)∥∥∥
Pi

≤ σ

m = 0, . . . ,Ni (7b)

x̂i
(
kr

i + m|kr
i

) ∈ Xi � Bi(m),m = 1, . . . ,Ni − 1 (7c)

ûi
(
kr

i + m|kr
i

) ∈ Ui,m = 0, . . . ,Ni − 1 (7d)

x̂i
(
kr

i + Ni|kr
i

) ∈ φi

(
4ε
5

)
(7e)

where Ni is the prediction horizon of subsystem i. ûi(kr
i ) =

{ûi(kr
i |kr

i ), . . . , ûi(kr
i +N −1|kr

i )} is the predicted control input
sequence at time kr

i , and φi(4ε/5) = {x ∈ R
ni : ‖x‖Pi ≤

4ε/(5
√

M)} denotes the terminal set. The positive control
parameters ε and σ are to be determined.

Denote û∗
i (k

r
i ) = {û∗

i (k
r
i |kr

i ), . . . , û∗
i (k

r
i + Ni − 1|kr

i )}
by the optimal control input sequence, and x̂∗

i(kr
i ) =

{x̂∗
i (k

r
i |kr

i ), . . . , x̂∗
i (k

r
i + N|kr

i )} the corresponding optimal

Fig. 2. Illustration of constructing the assumed state.

predicted state sequence. Define �(kr
i ) = kr

i − kr−1
i . The

following part specifies the expression of x̃j(kr
i +m|kr

i ), x̄∗
i (k

r
i +

m|kr−1
i ), Bi(m), and Ji(x̂i(kr

i ), ûi(kr
i ),Ni) in Pi, respectively.

1) The assumed state x̃j(k +m|k), j ∈ N u
i is constructed by

x̃j(k + m|k)

=
⎧
⎨

⎩

x̂∗
j (k + m|ηj(k)),m = 0, . . . , ηj(k)+ Nj − k

fj
(
x̃j(k + m − 1|k),Kjx̃j(k + m − 1|k))

m = ηj(k)+ Nj − k + 1, . . . ,Ni

(8)

where ηj(k) is the latest triggering instant of subsystem
j before k, that is, ηj(k) < k. Fig. 2 gives an illustration
of constructing the assumed state.

2) The state x̄∗
i (k

r
i + m|kr−1

i ) in (7b) is constructed by

x̄∗
i

(
kr

i + m|kr−1
i

)

=

⎧
⎪⎪⎨

⎪⎪⎩

x̂∗
i

(
kr

i + m|kr−1
i

)
, k = 0, . . . ,Ni −�

(
kr

i

)

fi
(

x̄∗
i

(
kr

i + m − 1|kr−1
i

)
,Kix̄∗

i

(
kr

i + m − 1|kr−1
i

))

k = Ni −�
(
kr

i

)+ 1, . . . ,Ni.

3) The tightened set Bi(m) is defined as

Bi(m) :=
{

x ∈ R
ni : ‖x‖Pi ≤ Lm

fi
−1

Lfi −1 τi + Ni�iLgijσ
Lm

fi
−Lfi(

Lfi −1
)2

}

(9)

where τi is a positive constant that will be determined
latter.

4) The cost function in Pi is defined as

Ji
(
x̂i
(
kr

i

)
, ûi
(
kr

i

)
,Ni

)

=
Ni−1∑

m=0

∥∥x̂i
(
kr

i + m|kr
i

)∥∥2
Qi

+ ∥∥ûi
(
kr

i + m|kr
i

)∥∥2
Ri

+ ∥∥x̂i
(
kr

i + Ni|kr
i

)∥∥2
Pi

(10)

where Qi, Ri, and Pi are positive-definite matri-
ces. Furthermore, Pi satisfies the Lyapunov equation
AT

si
PiAsi −Pi = −(Q̃i +�Qi), where Q̃i = Qi +KT

i RiKi,
and �Qi is a positive-definite matrix.

Remark 3:
1) The constraint in (7b) implies that the predicted state

x̂i(kr
i + m|kr

i ) of subsystem i does not diverge far away
from x̄∗(kr

i + m|kr−1
i ). By imposing this constraint, the

relationship between the feasible state to be constructed
and the optimal predicted state can be established, thus
facilitating the feasibility analysis of the optimization
problem Pi.

2) The tightened set Bi(m) in (9) is defined to ensure
xi(k) ∈ Xi ∀k > 0 in the presence of mutual and external
disturbances, which will be shown in Section IV.
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The assumptions of the degree of coupling and the state
feedback gain are as follows.

Assumption 3: AT
o PAo − AT

s PAs ≤ 1/2Q̃.
Assumption 4: There exist an auxiliary set φi(ε) with the

form of φi(ε) := {xi : ‖xi‖Pi ≤ ε/
√

M} and several constants
LfKi

> 0, 0 < ci < 1, and 0 < αi < 1, such that for all
i ∈ M, j ∈ Nu

i :
1) φi(ε) ⊆ {xi ∈ Xi � Bi(Ni − 1) : Kixi ∈ Ui};
2) fi(xi,Kixi) ∈ φi(4ciε/5) ∀xi ∈ φi(4ε/5);
3) fi(xi,Kixi) + ∑

j∈N u
i

gij(x̃j) ∈ φi(αiε) ∀xi ∈ φi(ε), and
x̃j ∈ φj(ε);

4) ‖fi(xi,Kixi) − fi(yi,Kiyi)‖Pi ≤ LfKi
‖xi − yi‖Pi ∀xi, yi ∈

φi(ε).
Remark 4:
1) Assumption 3 is a standard assumption adopted in much

DMPC literature (see, e.g., [5], [10], and [22]). It lim-
its the degree of coupling between subsystems and is
a prerequisite for the existence of a positively invari-
ant set φ(ε) in Lemma 1 and can be satisfied if the
positive-definite matrix �Q is chosen appropriately.

2) The properties 1)–4) in Assumption 4 are proposed to
guarantee the recursive feasibility of the optimization
problem and the stability of the overall system.
The properties 1), 2), and 4) are standard (see,
e.g., [9], [26]–[28], [30]). Property 1) holds as long
as φi(ε) is set to be small. Property 2) can be eas-

ily satisfied by setting ci =
√

1 − λ̄(P−1/2
i Q̃iP

−1/2
i )

according to Lemma 1. Property 3) is similar to the
assumptionsin [9] and [26] and may not be satisfied
when the degree of coupling between subsystems is too
strong [5], [10], [22]. In addition, determining αi ana-
lytically for a coupled nonlinear system is an intractable
task. Instead, we can find αi via numerical simulations.

Lemma 1: Let As = diag(As1 , . . . ,AsM ),
Q = diag(Q1, . . . ,QM), R = diag(R1, . . . ,RM),
P = diag(P1, . . . ,PM), and �Q = diag(�Q1, . . . ,�QM).
Then, for the system x(k + 1) = F(x(k),Kx(k)) with
Assumptions 1-3:

1) there exists a constant ε such that the set φ(ε) :=
{x : V(x) ≤ ε2} is a positively invariant set;

2) V(x(k + 1))− V(x(k)) ≤ −1/2x(k)T Q̃x(k) hold for any
x(k) ∈ φ(ε),Kx(k) ∈ U , where V(x(k)) = ‖x(k)‖2

P.
Proof: This proof follows similar logic of [31], but we still

sketch here since some steps will be helpful in the follow-
ing design. Define ψ(x(k)) = F(x(k),K(x(k))) − Ao(x(k)),
then difference of V(x(k)) along the trajectory x(k + 1) =
F(x(k),K(x(k))) can be calculated as

V(x(k + 1))− V(x(k))

= x(k)TAT
o PAox(k)+ ψ(x(k))TPψ(x(k))

+ 2ψ(x(k))TPAox(k)− x(k)TPx(k).

Considering AT
s PAs − P = −(Q̃ +�Q) and AT

o PAo − AT
s PAs ≤

1/2Q̃, we have

V(x(k + 1))− V(x(k))

≤ −1

2
x(k)TQ̃x(k)− x(k)T�Qx(k)

+ ψ(x(k))TPψ(x(k))+ 2ψ(x(k))TPAox(k). (11)

The terms involving ψ(x(k)) in the above inequality is
bounded as follows:

ψ(x(k))TPψ(x(k)) ≤ ‖P‖ · L2
φ · ‖x(k)‖2

ψ(x(k))TPAox(k) ≤ ‖PAo‖ · ‖ψ(x(k))T‖ · ‖x(k)‖
≤ ‖PAo‖ · Lφ · ‖x(k)‖2 (12)

where Lφ := sup{‖ψ(x)‖/‖x‖|x ∈ φ(ε), x �= 0}.
Substituting (12) into (11) yields

V(x(k + 1))− V(x(k)) ≤ −1

2
x(k)TQ̃x(k)− x(k)T�Qx(k)

+
(

L2
φ‖P‖ + 2Lφ‖PAo‖

)
‖x(k)‖2.

Thus, 1) and 2) both hold if the following condition holds:
(

L2
φ‖P‖ + 2Lφ‖PAo‖

)
‖x(k)‖2 ≤ x(k)T�Qx(k).

Since x(k)T�Qx(k) ≥ λ(�Q)‖x(k)‖2, the above condition is
equivalent to

λ(�Q)− L2
φ‖P‖ − 2Lφ‖PAo‖ ≥ 0.

The positive solution of L2
φ‖P‖ + 2Lφ‖PAo‖ − λ(�Q) = 0 is

given as

L∗
φ =

√
‖PAo‖2+λ(�Q)‖P‖−‖PAo‖

‖P‖ .

Therefore, if we choose ε > 0 such that Lφ ≤ L∗
φ , then the

assertions 1) and 2) hold. This proof is completed.
Remark 5: The level set φ(ε) is crucial in construct-

ing a feasible solution to the optimization problem as the
horizon window moves to every computation cycle and is
also important in analyzing the closed-loop stability (see,
e.g., [10], [30]). To determine the level set φ(ε), we can
choose the largest possible value of ε such that Lφ ≤ L∗

φ .
In addition, we can use an alternative approach to obtain
a less conservative set φ(ε). In fact, in order to guarantee
V(x(k + 1)) − V(x(k)) ≤ −1/2x(k)T Q̃x(k), the inequality
−x(k)T�Qx(k)+ψ(x(k))TPψ(x(k))+ 2ψ(x(k))TPAox(k) ≤ 0
in (11) should be met. Therefore, the control parameter ε
is chosen such the optimal value M(ε) of the following
optimization problem remains negative:

M(ε) = max
x

{−xT�Qx + ψ(x)TPψ(x)+ 2ψ(x)TPAox
}

s.t. 0 < xTPx ≤ ε2

ε ≤ ζ (13)

where ζ is designed such that Kx ∈ U ∀x ∈ {x : xTPx ≤ ζ }.
To obtain a larger level set, one can increase the value of ε
while keeping M(ε) negative.

B. Compound Event-Triggering Condition

In this part, the compound triggering condition is deter-
mined, including a condition to ensure the recursive feasibility
and a parallel-triggering condition to guarantee stability.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 26,2022 at 23:45:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

1) Triggering Condition for Feasibility: At every update
time, for each subsystem i, the assumed state information of its
upstream neighbors can be transmitted to subsystem i by con-
troller i. In this case, the subsystem i can obtain the assumed
state information of its upstream neighbors but not the actual
one. Furthermore, the dynamics of subsystem i is subject to
external disturbances. These two aspects lead to an estimated
error between i’s the predicted state and actual one, making the
state constraints in (7b) and (7e) unsatisfaction. To circumvent
this, the following triggering condition is proposed:

∥∥xi(k)− x̂∗
i

(
k|kr

i

)∥∥
Pi
>

τi−λ̄
(

P
1
2
i

)
ρi−�iLgij(τj+Niσ)

Lfi
(14)

where �i = maxi∈M Card{N u
i }.

For each subsystem i, i ∈ M, if the deviation between
its predicted state x̂∗

i (k|kr
i ) and actual state xi(k) exceeds the

designed threshold, the event is triggered. Based on such trig-
gering condition, the upper bound of the estimated error at the
next triggering instant is given.

Lemma 2: For the subsystem in (1) with Assumption 1, if
the triggering condition is designed as (14), then

∥∥∥x
(

kr+1
i

)
− x̂∗

i

(
kr+1

i |kr
i

)∥∥∥
Pi

≤ τi. (15)

Proof: See Appendix A.
This lemma shows that even if the event is triggered, the

state error at the triggering instant is still bounded by τi, and
this lemma is a preparation for the recursive feasibility.

2) Parallel-Triggering Condition for Stability: The essen-
tial spirit of designing the triggering condition to ensure
stability lies in making the Lyapunov function decrease as
time elapses.

Suppose that Pi in (7) is solved at the triggering instant kr
i ,

the optimal solution û∗
i (k

r
i ) and the corresponding optimal state

sequence x̂∗
i (k

r
i ) are obtained. Based on the optimal solution,

the future control input sequence ūi(k) = {ūi(k|k), . . . , ūi(k +
Ni − 1|k)} and the corresponding state sequence x̄i(k) =
{x̄i(kr

i |kr
i ), . . . , x̄i(kr

i + N|kr
i )} can be constructed as follows.

For k = kr
i + 1

⎧
⎪⎪⎨

⎪⎪⎩

x̄i(k + m + 1|k) = fi(x̄i(k + m|k), ūi(k + m|k))
+ ∑

j∈N u
i

gij
(
x̃j(k + m|k)), m = 0, . . . ,Ni − 1

ūi(k + m|k) =
{

û∗
i

(
k + m|kr

i

)
, m = 0, . . . ,Ni − 2

Kix̄i(k + m|k), m = Ni − 1.

(16)

For k > kr
i + 1

⎧
⎪⎪⎨

⎪⎪⎩

x̄i(k + m + 1|k) = fi(x̄i(k + m|k), ūi(k + m|k))
+ ∑

j∈N u
i

gij
(
x̃j(k + m|k)), m = 0, . . . ,Ni − 1

ūi(k + m|k) =
{

ūi(k + m|k − 1), m = 0, . . . ,Ni − 2,
Kix̄i(k + m|k), m = Ni − 1

(17)

with x̄i(k|k) = xi(k), and Ki(·) is defined in Assumption 2. The
constructed control input sequence ūi(k) and state sequence
x̄i(k) are utilized not only to determine the next triggering
instant but also to analyze the recursive feasibility.

The Lyapunov function candidate is defined as

Vi(xi(k|k)) =
Ni∑

m=0

‖xi(k + m|k)‖Pi
. (18)

Denote the difference of the Lyapunov function between two
successive time k and k − 1 by �Vi(k), then

�Vi(k)

=
{

Vi(x̄i(k|k))− Vi
(
x̂∗

i

(
kr

i |kr
i

))
, k = kr

i + 1
Vi(x̄i(k|k))− Vi(x̄i(k − 1|k − 1)), kr

i + 1 < k < kr+1
i .

In the following lemma, the upper bound of �Vi(k) is
derived, which facilitates the triggering condition design.

Lemma 3: For each subsystem in (1) with Assumptions 1
and 4, if the constructed control inputs ūi(k) from (16) or (17)
are applied, then the upper bound of �Vi(k) is

�Vi(k) ≤ −‖xi(k − 1)‖Pi + ei(k)

+
Ni−1∑

m=1

χi(m)+ ∥∥x̂i(k + Ni|k − 1)
∥∥

Pi

+ LfKi
χi(Ni − 1)+

∑

j∈N u
i

Lgijξj(k + Ni − 1|k)

where

ei(k) =
{∥∥xi(k)− x̂∗

i

(
k|kr

i

)∥∥
Pi
, k = kr

i + 1

‖xi(k)− x̄i(k|k − 1)‖Pi
, kr

i + 1 < k < kr+1
i

χi(m) = Lm
fi ei(k)+

∑

j∈N u
i

m−1∑

l=0

Lm−l−1
fi

Lgijξj(k + l|k)

ξj(k + l|k) = ‖x̃j(k + l|k)− x̃j(k + l|k − 1)‖Pi

and

x̂i(k + Ni|k − 1)

=

⎧
⎪⎪⎨

⎪⎪⎩

fi
(
x̂∗

i

(
k + Ni − 1|kr

i

)
,Kix̂∗

i

(
k + Ni − 1|kr

i

))

+ ∑
j∈N u

i
gij
(
x̃j
(
k + Ni − 1|kr

i

))
, k = kr

i + 1
fi(x̄i(k + Ni − 1|k − 1),Kix̄i(k + Ni − 1|k − 1))
+∑j∈N u

i
gij
(
x̃j(k + Ni − 1|k − 1)

)
, kr

i + 1 < k < kr+1
i .

Proof: See Appendix B.
According to Lemma 3, the triggering condition at time

k is designed as follows to keep the stability by subjecting
Vi(xi(k|k)) to decrease:

Ni−1∑

m=1

χi(m)+ ∥∥x̂i(k + Ni|k − 1)
∥∥

Pi
+ LfKi

χi(Ni − 1)

+
∑

j∈N u
i

Lgijξj(k + Ni − 1|k)+ ei(k) > βi‖xi(k − 1)‖Pi

(19)

where βi ∈ (0, 1) is a constant.
With the triggering condition (19), the Lyapunov function

candidate is monotonically decreasing during [kr
i , kr+1

i − 1].
However, this condition is easily met, especially in the pres-
ence of the external and mutual disturbances because the value
of βi‖xi(k − 1)‖2

Qi
is very small as the state xi(k) approaches

the origin (see, e.g., [32]). As a consequence, the event is trig-
gered frequently if the algorithm is performed only relies on
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Algorithm 1 Compound Event-Triggered DMPC Algorithm
Initialization: For each subsystem, give initial state xi(0); cal-
culate weighted matrices Qi, Ri, Pi, local feedback gain Ki,
and the level set φi(ε) according to Lemma 1; choose the
prediction horizon Ni and control parameters τi, δi based on
(25), (24) and (33); let θi = 0 (θ is the switching signal, and
θ = 1 means the system state enters the level set).

1: For each controller i, at any time k, generate x̃j(k +
m|k),m = 0, . . . ,Ni based on (8).

2: Measure the system state xi(k); check whether the trig-
gering conditions in (22) hold true, if they hold, set
kr+1

i = k, r = r + 1, receive x̂∗
j (ηj(k)) or x̂i(ηj(k)) and

update x̃j(k + m|k), go to step 3. Otherwise, go to 5.
3: If θi = 0, solve Pi to obtain the optimal control and

state sequence û∗
i (k) and x̂∗

i (k); apply ui(k) = û∗
i (k|k)

to the subsystem i, go to step 1. Otherwise, go to step
4.

4: Generate control sequence ûi(k+m|k),m = 0, . . . ,Ni−1
and state sequence x̂i(k) according to (23); apply ui(k) =
ûi(k|k) to the subsystem i; set θi = 1, go to step 1.

5: If xi(k) ∈ φi(ε) and θi = 0, go to step 4. Otherwise, go
to step 6.

6: Construct ūi(k + m|k),m = 0, . . . ,Ni − 1 based on (16)
or (17); apply ui(k) = ūi(k|k) to the subsystem; set k =
k + 1, go to step 1.

(20), resulting in high computation and communication load.
Inspired by [33], we further propose the following auxiliary
condition to reduce the triggering frequency:

‖xi(k)‖Pi > e−γik‖xi(0)‖Pi + δi (20)

where xi(0) is the initial state of subsystem i, γi > 0 and
0 < δi < ε/

√
M are two constants

Then, combining (19) and (20) forms the following parallel-
triggering condition:

{
(19) (21a)

‖xi(k)‖Pi > e−γik‖xi(0)‖Pi + δi. (21b)

In the majority of the event-triggered MPC literature, such
as [21] and [34], an event occurs as long as the condition simi-
lar to (19) holds. But in our proposed triggering condition (21),
only when both (19) and (20) are satisfied will an event be
triggered. In this way, the proposed parallel-triggering con-
dition (21) reduces the number of triggering instants further
while achieving comparable control performance.

Summarizing the above triggering conditions (14) and (21),
the compound triggering conditions are designed as

(14) or (21) or k − kr
i ≥ Ni. (22)

If one of the conditions in (22) holds, the optimization problem
Pi of subsystem i is solved and the triggering instant is updated
to kr+1

i = k. The more specific procedure is summarized in
Algorithm 1.

C. Compound Event-Triggered DMPC Algorithm

To stabilize the overall systems, the state feedback gain
Ki is adopted. However, in the control structure shown in

Fig. 1, the implementation of the traditional dual-model strat-
egy [18], [27] requires the periodic transmission of the system
state and control input, resulting in a significant consumption
of the communication resources. To overcome this issue, we
employ the state feedback gain K to generate the predicted
control inputs sequence in an open-loop manner when the
system state enters the level set φ(ε), as follows:
⎧
⎨

⎩

ûi
(
kr

i + m|kr
i

) = Ki
(
x̂i
(
kr

i + m|kr
i

))

x̂i
(
kr

i + m + 1|kr
i

) = fi
(
x̂i
(
kr

i + m|kr
i

)
, ûi
(
kr

i + m|kr
i

))

+ ∑
j∈N u

i
gij
(
x̃j
(
kr

i + m|kr
i

)) (23)

where m = 0, . . . ,Ni −1, x̂i(kr
i |kr

i ) = xi(kr
i ), and kr

i is the time
when the state enters the level set.

The compound event-triggered DMPC algorithm is
presented in Algorithm 1. For each subsystem i, at each trig-
gering instant kr

i , its upstream neighbors’ state information
is updated according to (8). If xi /∈ φi(ε), the control input
sequence û∗

i (k
r
i ) is generated by solving Pi in (7). Otherwise,

the control input sequence ûi(kr
i ) is obtained according to (23).

Then, the control input in û∗
i (k

r
i ) or ûi(kr

i ) is applied to the
subsystem i in turn until one of the conditions in (22) is satis-
fied, and the corresponding state trajectory x̂∗

i (k
r
i ) or x̂i(kr

i ) is
transmitted to i’s downstream neighbours. It is worth noting
that, for xi(kr

i ) /∈ φi(ε), once the state xi(k), k > kr
i enters the

level set φi(ε), the event is triggered and the triggering instant
is updated to kr+1

i = k even if the triggering condition (22) is
not satisfied.

IV. ANALYSIS

In this section, the satisfaction of the actual state constraints
is validated, followed by recursive feasibility and stability
analysis.

A. Actual State Constraints Analysis

In general, due to the mutual and external disturbances, the
actual state constraints may not be satisfied. The following the-
orem shows that the constraint tightening approach designed
in (7) can address the problem.

Theorem 1: Suppose that Assumptions 1-5 hold. Then,
under Algorithm 1, the actual state satisfies xi(k) ∈ Xi ∀k >
0, i ∈ M.

Proof: According to Algorithm 1, the actual state tra-
jectory is generated by applying the control input signals
between two successive triggering instants. Therefore, prov-
ing Theorem 1 is equivalent to proving xi(kr

i + m) ∈ Xi ∀m =
1, . . . ,�(kr+1

i ), i ∈ M.
This theorem is proved by investigating two cases. Case 1

(x(kr
i ) /∈ φi(ε) and x(kr

i ) ∈ Xi): in this situation, the con-
trol input û∗

i (k
r
i ) obtained by solving Pi is applied. From the

inequality in (15), we have ‖xi(kr
i +m)− x̂∗

i (k
r
i +m|kr

i )‖Pi ≤ τi

for all m = 1, . . . ,�(kr+1
i ). Since x̂∗

i (k
r
i +m|kr

i ) ∈ Xi �Bi(m),
using the triangle inequality yields xi(kr

i + m) ∈ Xi �Bi(m)⊕
τi ⊆ Xi ∀m = 1, . . . , �(kr+1

i ). Case 2 (x(kr
i ) ∈ φi(ε)): in this

situation, the control input ûi(kr
i + m|kr

i ) = Ki(x̂i(kr
i + m|kr

i ))

is applied. We still have ‖xi(kr
i + m)− x̂i(kr

i + m|kr
i )‖Pi ≤ τi.

According to the equation in (23) and Assumption 4, we can
obtain x̂i(kr

i +m|kr
i ) = fi(x̂i(kr

i +m−1|kr
i ), ûi(kr

i +m−1|kr
i ))+
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∑
j∈N u

i
gij(x̃j(kr

i + m − 1|kr
i )) ∈ φi(ε) ⊆ Xi � Bi(Ni − 1).

Therefore, utilizing the triangle inequality yields xi(kr
i + m) ∈

Xi � Bi(Ni − 1) ⊕ τi ⊂ Xi. Combining the above two cases
completes this proof.

B. Recursive Feasibility Analysis

The recursive feasibility means that Pi always has a solution
for each subsystem i ∈ M at every triggering instant provided
that an initial feasible solution of Pi is available. Before giving
the technical details, an assumption is given to facilitate the
initialization phase.

Assumption 5 [22]: Given the initial states x(0) =
[xT

1 (0), . . . , xT
M(0)]

T , there always exist assumed state trajec-
tory x̃j(0), j ∈ N u

i such that Pi in (7) has a solution.
Based on Assumption 5, the recursive feasibility is shown

in the following theorem.
Theorem 2: For the system (4) with Assumptions 1–5, if

the following conditions are satisfied:

Ni−1∑

l=0

max
{

Ll
fi ,Ll

fKi

}(
�iLgij

(
Niσ + 4ε

5
√

M

))

+ max
{

LNi
fi
,LNi

fKi

}
τi ≤ σ (24)

LNi−1
fi

τi +
(

L
Ni−1
fi

−1
)

Lfi−1 Ni�iLgijσ ≤ ε

5
√

M
(25)

σ ≤ 4(1−ci)ε

5
√

M
(26)

then, the optimization problem Pi is recursively feasible.
To prove this theorem, the following useful lemmas are

given, where Lemma 4 illustrates the satisfaction of the con-
straint in (7b), Lemma 5 indicates that the tightened constraint
in (7c) holds true, and Lemma 6 shows the satisfaction of input
constraint in (7d).

Lemma 4: For system (4) with Assumptions 1–5, if Pi has
a feasible solution at kr

i ∀i ∈ M, r ≥ 0, and the condition
in (24) holds, then ‖x̄i(k

r+1
i + m|kr+1

i )− x̄∗
i (k

r+1
i + m|kr

i )‖Pi ≤
σ ∀m = 0, . . . ,Ni.

Proof: This lemma is proved by investigating two cases.
When m = 0, . . . ,Ni −�(kr+1

i ), we have x̄∗
i (k

r+1
i +m|kr

i ) =
x̂∗

i (k
r+1
i + m|kr

i ). The two states trajectories x̄i(k
r+1
i + m|kr+1

i )

and x̂∗
i (k

r+1
i +m|kr

i ) are generated by adopting the same control
input, thus we iteratively obtain
∥∥∥x̄i

(
kr+1

i + 1|kr+1
i

)
− x̂∗

i

(
kr+1

i + 1|kr
i

)∥∥∥
Pi

≤ Lfi

∥∥∥x̄i

(
kr+1

i |kr+1
i

)
− x̂∗

i

(
kr+1

i |kr
i

)∥∥∥
Pi

+ Ni�iLgijσ

≤ Lfiτi + Ni�iLgijσ

· · ·∥∥∥x̄i

(
kr+1

i + m|kr+1
i

)
− x̂∗

i

(
kr+1

i + m|kr
i

)∥∥∥
Pi

≤ Lfi

∥∥∥x̄i

(
kr+1

i + m − 1|kr+1
i

)
− x̂∗

i

(
kr+1

i + m − 1|kr
i

)∥∥∥
Pi

+ Ni�iLgijσ

≤ Lm
fi τi +

m−1∑

l=0

Ll
fiNi�iLgijσ. (27)

When m = Ni −�(kr+1
i )+ 1, . . . ,Ni, we have

∥∥∥x̄i

(
kr

i + Ni + 1|kr+1
i

)
− x̄∗

i

(
kr

i + Ni + 1|kr
i

)∥∥∥
Pi

≤ LfKi

∥∥∥x̄i

(
kr

i + Ni|kr+1
i

)
− x̂∗

i

(
kr

i + Ni|kr
i

)∥∥∥
Pi

+ �iLgij Niσ +
∥∥∥∥∥∥

∑

j∈N u
i

gij

(
x̃j

(
kr+1

i + Ni|kr
i

))
∥∥∥∥∥∥

Pi

.

Since ‖x̃j(k
r+1
i + m|kr

i )‖Pi ≤ 4ε/5
√

M, for all m = Ni −
�(kr+1

i )+ 1, . . . ,Ni, we iteratively obtain
∥∥∥x̄i

(
kr+1

i + m|kr+1
i

)
− x̂∗

i

(
kr+1

i + m|kr
i

)∥∥∥
Pi

≤ L
m+�ki −Ni

fKi

∥∥∥x̄i

(
kr

i + Ni|kr+1
i

)
− x̂∗

i

(
kr

i + Ni|kr
i

)∥∥∥
Pi

+
m+�ki−Ni−1∑

l=0

Ll
fKi
�iLgij

(
Niσ + 4ε

5
√

M

)
.

By summarizing the above two cases, it follows:
∥∥∥x̄i

(
kr+1

i + m|kr+1
i

)
− x̂∗

i

(
kr+1

i + m|kr
i

)∥∥∥
Pi

≤ max
{

Lm
fi ,Lm

fKi

}
τi

+
m−1∑

l=0

max
{

Ll
fi ,Ll

fKi

}
�iLgij

(
Niσ + 4ε

5
√

M

)
(28)

where m = 0, . . . ,Ni. By virtue of the condition in (24), it
follows that ‖x̄i(k

r+1
i +m|kr+1

i )− x̂∗
i (k

r+1
i +m|kr

i )‖Pi ≤ σ,m =
0, . . . ,Ni.

Lemma 5: For system (4) with Assumptions 1–5, if Pi has
a feasible solution at kr

i ∀i ∈ M and (25) holds, then the
state x̄i(k

r+1
i +m|kr+1

i ) w.r.t. ūi(k
r+1
i +m|kr+1

i ) in (16) or (17)
satisfies x̄i(k

r+1
i + m|kr+1

i ) ∈ Xi � Bi(m) ∀m = 1, . . . ,Ni − 1.
Proof: This claim is proved in two cases.
When m = 1, . . . ,Ni − �(kr+1

i ), utilizing the result in
Lemma 4 and the triangle inequality yields

∥∥∥x̄i

(
kr+1

i + m|kr+1
i

)∥∥∥
Pi

≤
∥∥∥x̂∗

i

(
kr+1

i + m|kr
i

)∥∥∥
Pi

+ Lm
fi τi + Ni�i

(
Lm

fi
−1
)

Lfi−1 Lgijσi. (29)

Since x̂∗
i (k

r+1
i + m|kr

i ) ∈ Xi � Bi(m + �(kr+1
i )), and the

definition of Bi(m) in (9), it follows that:

x̄i

(
kr+1

i + m|kr+1
i

)
∈ Xi � Bi

(
m +�

(
kr+1

i

))

⊕
(

Lm
fi τi + Ni�i

(
Lm

fi
−1
)

Lfi−1 Lgijσi

)

⊂ Xi � Bi(m). (30)

When m = Ni −�(kr+1
i )+ 1, . . . ,Ni − 1, substituting m =

Ni −�(kr+1
i ) into (27) yields
∥∥∥x̄i

(
kr

i + Ni|kr+1
i

)
− x̂∗

i

(
kr

i + Ni|kr
i

)∥∥∥
Pi

≤ L
Ni−�

(
kr+1

i

)

fi
τi +

(
L

Ni−�
(

kr+1
i

)

fi
−1

)

Lfi−1 Ni�iLgijσ. (31)
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Since ‖x̂∗
i (k

r
i + Ni|kr

i )‖Pi ≤ 4ε/5
√

M, according to the condi-
tion in (25), it follows that ‖x̄i(kr

i + Ni|kr+1
i )‖Pi ≤ ε/

√
M,

that is, x̄i(kr
i + Ni|kr+1

i ) ∈ φi(ε), which guarantees that
the state feedback gain Ki is allowed to be applied during
[kr

i + Ni, kr+1
i + Ni − 1]. Then, by virtue of Assumption 4,

we have x̄i(k
r+1
i + m|kr+1

i ) ∈ φi(αiε) ⊂ Xi � Bi(m), for all
m = Ni −�(kr+1

i )+ 1, . . . ,Ni − 1.
Lemma 6: Suppose that Assumptions 1–5, and the condi-

tion in (25) hold. For any i ∈ M, if Pi has a solution at kr
i ,

then ūi(k
r+1
i + m|kr+1

i ) ∈ Ui ∀m = 0, . . . ,Ni − 1.
Proof: From (16), we obtain ūi(k

r+1
i +m|kr+1

i ) = û∗
i (k

r+1
i +

m|kr
i ) ∈ Ui ∀m = 0, . . . ,Ni −�(kr+1

i ) − 1. Then, it needs to
show that ūi(k

r+1
i +m|kr+1

i ) ∈ Ui ∀m = Ni−�(kr+1
i ), . . . ,Ni−

1. Invoking Lemma 5, we know that x̄i(k
r+1
i + m|kr+1

i ) ∈
φi(ε) ∀m = Ni − �(kr+1

i ), . . . ,Ni − 1. Since φi(ε) is a
constraint admissible set according to Lemma 1, we obtain
that ūi(k

r+1
i + m|kr+1

i ) = Kix̄i(k
r+1
i + m|kr+1

i ) ∈ Ui ∀m =
Ni − �(kr+1

i ), . . . ,Ni − 1. Thus, the control input constraint
is satisfied.

Based on the above lemmas, Theorem 2 can then be proved.
Proof of Theorem 2: This proof follows by induction prin-

ciple. At time k = 0, Pi is feasible with Assumption 5. Now,
suppose that Pi is feasible at any kr

i , r > 0, i ∈ M. It remains
to show that the constructed control input sequence ūi(k

r+1
i )

and the corresponding state sequence x̄i(k
r+1
i ) are also feasi-

ble for the optimization problem Pi, which can be proved by
showing the fact that ūi(k

r+1
i ) and x̄i(k

r+1
i ) satisfy the con-

straints in (7). From the above lemmas, the constraint in (7b)
and (7c) holds that follows from Lemmas 4 and 5, respec-
tively, and the control input constraint satisfaction in (7d) is
shown in Lemma 6. Finally, it remains to show the terminal
constraint in (7e) is satisfied. By using the triangle inequality,
one obtains∥∥∥x̄i

(
kr+1

i + Ni|kr+1
i

)∥∥∥
Pi

≤
∥∥∥x̄i

(
kr+1

i + Ni|kr+1
i

)
− x̂∗

i

(
kr+1

i + Ni|kr
i

)∥∥∥
Pi

+
∥∥∥x̂∗

i

(
kr+1

i + Ni|kr
i

)∥∥∥
Pi
. (32)

Since x̂∗
i (k

r
i + Ni|kr

i ) ∈ φi(4ε/5), we obtain ‖x̂∗
i (k

r+1
i +

Ni|kr
i )‖Pi ≤ 4ciε/5

√
M from the property 2) in Assumption 4.

Then, by application of the condition in (26), the terminal
constraint x̄i(k

r+1
i + Ni|kr+1

i ) ≤ 4ε/5
√

M can be satisfied.
Incorporating the above lemmas completes Theorem 2.

Remark 6: From the conditions in (24) and (25), it can be
seen that a larger Lipschitz constant Lfi gives rise to a smaller
feasible Ni and τi, leading to a conservative result. Compared
with the conditions for ensuring the event-triggered algorithm
feasibility in [22] where the Lipschitz constant Lfi of each
subsystem is chosen as a common large upper bound, the
conditions in (24) and (25) allow the Lipschitz constants to
chosen separately for each subsystem by taking the different
characteristics of subsystems into consideration. Therefore, the
designed conditions enjoy lower conservativeness.

C. Stability Analysis

In this part, closed-loop stability under Algorithm 1 is
analyzed by the following theorem.

Theorem 3: Suppose that Assumptions 1–5 hold, and con-
ditions in (24), (25), and (26) are satisfied. Then, the overall
system (4) under Algorithm 1 is stable, provided that the
following conditions hold:

τi + (Ni − 1)σ < ε

5
√

M
(33)

τi ≤ (1−αi)ε√
M

. (34)

Proof: The core of proving Theorem 3 is to show two
claims. (C1): all states x, x /∈ φ(ε) will enter φ(ε) in finite
time and (C2): the states x never leave φ(ε) forever once they
enter φ(ε). These two claims can be obtained by proving that
the state trajectory xi(k) can enter φi(ε) in finite time and never
leave φi(ε) [10].

(C1): For this claim, we need to verify two points, that is:
(P1) based on the triggering condition (19), the state trajectory
xi(k) can enter φi(ε) in finite time and (P2) the parallel-
triggering condition (21) can still make the state trajectory
xi(k) enter φi(ε) in finite time.

We show (P1) by following the similar idea in [26] and
[27]. Use k̄r

i to denote the rth triggering instants of subsystem
i determined only by the triggering condition (19). Two cases
are considered.

Case I: If no event occurs at time k, in Section III-B,
we have shown that Vi(x̄i(k|k)) − Vi(x̂∗

i (k̄
r
i |k̄r

i )) < 0 and
Vi(x̄i(k|k))− Vi(x̄i(k − 1|k − 1)) < 0, k̄r

i ≤ k < k̄r+1
i .

Case II: If an event occurs at time k (without loss of gen-
erality, set k = k̄r+1

i ), the difference of the Lyapunov function
candidate, that is, Vi(x̂∗

i (k̄
r+1
i |k̄r+1

i ))−Vi(x̄i(k̄
r+1
i −1|k̄r+1

i −1))
and Vi(x̂∗

i (k̄
r+1
i |k̄r+1

i ))− Vi(x̂∗
i (k̄

r
i |k̄r

i )), are calculated as

Vi

(
x̂∗

i

(
k̄r+1

i |k̄r+1
i

))
− Vi

(
x̄i

(
k̄r+1

i − 1|k̄r+1
i − 1

))

≤ −
∥∥∥xi

(
k̄r+1

i − 1
)∥∥∥

Pi
+
∥∥∥xi

(
k̄r+1

i

)
− x̄i

(
k̄r+1

i |k̄r+1
i − 1

)∥∥∥
Pi

+
Ni−1∑

m=1

∥∥∥x̂∗
i

(
k̄r+1

i + m|k̄r+1
i

)
− x̄i

(
k̄r+1

i + m|k̄r+1
i − 1

)∥∥∥
Pi

+
∥∥∥x̄i

(
k̄r+1

i + Ni|k̄r+1
i

)∥∥∥
Pi
.

Since ‖x̂∗
i (k̄

r+1
i + m|k̄r+1

i ) − x̄i(k̄
r+1
i + m|k̄r+1

i − 1)‖Pi ≤
‖x̂∗

i (k̄
r+1
i +m|k̄r+1

i )−x̂∗
i (k̄

r
i +m|k̄r

i )‖Pi ≤ σ , x̄i(k̄
r+1
i +Ni|k̄r+1

i ) ∈
φi(4ε/5) and xi(k̄

r+1
i − 1) /∈ φi(ε), we have

Vi

(
x̂∗

i

(
k̄r+1

i |k̄r+1
i

))
− Vi

(
x̄i

(
k̄r+1

i − 1|k̄r+1
i − 1

))

≤ − ε√
M

+ τi + (Ni − 1)σ + 4ε
5
√

M
.

Therefore, if the condition in (33) holds, one obtains

Vi

(
x̂∗

i

(
k̄r+1

i |k̄r+1
i

))
− Vi

(
x̄i

(
k̄r+1

i − 1|k̄r+1
i − 1

))
< 0. (35)

Similarly, we obtain Vi(x̂∗
i (k̄

r+1
i |k̄r+1

i ))− Vi(x̂∗
i (k̄

r
i |k̄r

i )) < 0.
Thus, �Vi(k) < 0 ∀k > 0, which implies that the state xi(k)
enters the terminal set φi(ε) in finite time [26], [27].

We show (P2) by contradiction. Note that the triggering
rule is that an event will be triggered only when both (21a)
and (21b) are satisfied. Suppose that there does not exist
a finite k such that the subsystem state xi(k) ∈ φi(ε),
φi(ε) := {xi : ‖xi‖Pi ≤ ε/

√
M} under the triggering condition

in (21). Then ∀k > 0, there always exists some ε > 0 such
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that ‖xi(k)‖Pi ≥ ε/
√

M + ε. Let k∗ represent the time instant
when ε/

√
M + ε ≥ e−γik‖xi(0)‖Pi + δi holds for k ≥ k∗, then

‖xi(k)‖Pi > e−γik‖xi(0)‖Pi + δi holds for all k > k∗, that is,
the condition in (21b) holds for all k > k∗. Therefore, when
k > k∗, whether the event is triggered or not depends only on
the condition (21a). In other words, when k > k∗, the event
triggered by the triggering condition in (19) is same as that by
the triggering condition in (21). In view of the above suppo-
sition, we know that there does not exist a finite time k such
that xi(k) ∈ φi(ε), which contradicts (P1).

(C2): Once the state enters the level set φi(ε), the predicted
control input is generated by using the state feedback gain
Ki according to (23). Then, the estimated error is bounded by
‖xi(kr

i +m)−x̂i(kr
i +m|kr

i )‖Pi ≤ τi. Since x̂i(kr
i +m|kr

i ) ∈ φi(αiε)

according to Assumption 4, by virtue of the condition in (34),
we have ‖xi(k

p
i + m)‖Pi ≤ ε/

√
M. This implies that the actual

state never leaves φ(ε) even if the event is triggered in the
terminal set.

Summarizing (C1) and (C2) completes the proof.
Remark 7: From (C1), we can see that the parallel-triggering

condition (21) no longer needs to keep the Lyapunov function
decreasing all the time. Suppose that at k̄r

i , the condition in
(21a) holds, but the condition in (21b) does not, then the event
is not triggered and the Lyapunov function candidate may
not keep decreasing. Until kr

i , kr
i > k̄r

i , both (21a) and (21b)
hold, the event is triggered. Therefore, the Lyapunov function
candidate may no longer keep decreasing during [k̄r

i , kr
i ).

Remark 8: Theorem 3 implies that the closed-loop stabil-
ity is related to the prediction horizon Ni, and the control
parameter σ and τi.

1) From (25) and (33), one observes that a larger τi forces
smaller values of σ and Ni, which in turn impacts the
feasibility and the closed-loop stability, although a larger
τi can bring economical communication load.

2) From (24), (25), and (33), it can be derived that due to
the use of Lipschitz constants, a larger prediction hori-
zon Ni leads to smaller σ and τi, resulting in a more
conservative result, although a larger Ni has the potential
to improve the control performance.

3) To choose these control parameters, one can first deter-
mine the feasible range for σ and τi according to (26)
and (34), and then select an appropriate Ni based
on (24), (25), and (33).

V. SIMULATIONS

This section validates the effectiveness of the proposed
event-triggered DMPC algorithm by an example that contains
three mass-spring-damper subsystems connected to each other
with springs as in [5]. The structure diagram of the system is
displayed in Fig. 3.

The discretized version of the dynamic of the three carts,
which are obtained by forward-Euler discretized method, is
expressed as

x11(k + 1) = x11(k)+ Tx12(k)

x12(k + 1) =
(

1 − Th1
m1

)
x12(k)− Tk1

m1
e−x11(k)x11(k)

− Tkc
m1
(x11(k)− x21(k))+ T

m1
u1 + w1(k)

Fig. 3. Structure diagram of the simulated system.

TABLE I
PARAMETERS DESCRIPTION

x21(k + 1) = x21(k)+ Tx22(k)

x22(k + 1) =
(

1 − Th2
m2

)
x22(k)− Tk2

m2
e−x21(k)x21(k)

− Tkc
m2
(x21(k)− x11(k))− Tkc

m2
(x21(k)

− x31(k))+ T
m2

u2 + w2(k)

x31(k + 1) = x31(k)+ Tx32(k)

x32(k + 1) =
(

1 − Th3
m3

)
x32(k)− Tk3

m3
e−x31(k)x31(k)

− Tkc
m3
(x31(k)− x21(k))+ T

m3
u3 + w3(k)

where the component xi1 and the component xi2 are the dis-
placement and the velocity of cart i, i = 1, 2, 3, respectively.
The stiffness of the local nonlinear spring and the local vis-
cous damping of each cart i is ki and hi, respectively. The
stiffness of the interconnecting springs is kc. ui(k) and wi(k)
are the control input and the disturbance for cart i, whose mass
is mi. T is the sampling time, which can be set to T = 0.2
s according to [35]. The value of these system parameters is
given in Table I. The state and control input constraints of each
cart are set as Xi = {xi : − 1 ≤ xi1 ≤ 1,−1 ≤ xi2 ≤ 1} and
Ui = {ui : −1 ≤ ui ≤ 1}. The initial states are x1(0) = (0.6, 0),
x1(0) = (−0.5, 0), and x1(0) = (0.5, 0), respectively.

To implement Algorithm 1, the weighted matrices are set

as Qi =
[

0.2 0
0 0.2

]
, Ri = 0.1, i = 1, 2, 3. The feed-

back gains are calculated as K1 = [−0.6290 −0.9871],
K2 = [−1.0655 −1.1210], K3 = [−0.7823 −1.6816] by
using the LQR method. To satisfy Assumption 3, �Qi are

set as �Qi =
[

0.2 0
0 0.4

]
, and the corresponding terminal

matrixes are calculated as P1 =
[

3.3776 0.9837
0.9837 1.5419

]
, P2 =

[
3.6225 1.2289
1.2289 1.5905

]
, and P3 =

[
3.6424 1.3692
1.3692 2.4882

]
. Thus, the

Lipschitz constants are Lf1 = 1.1402, Lf2 = 1.0430, and
Lf3 = 1.1556. According to Lemma 1, the control parameter is
designed as ε = 0.9486, and αi = 0.9. Then, according to the
conditions in (20), (26), and (34), the other control parameters
are designed as δ1 = δ2 = δ3 = 0.5, σ = 0.02, τ1 = 0.0027,
τ2 = 0.0021, and τ3 = 0.0023. Finally, the prediction horizon
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Fig. 4. State and input trajectories of each cart.

Fig. 5. Triggering instants (“×”) and transmission instants (“◦”) under the
algorithm in [22].

are given by N2 = 6, N2 = N3 = 5 based on the conditions
in (24), (25), and (33). The disturbance bounds of the three
carts are ρ1 = ρ2 = ρ3 = 0.001.

The displacements, velocities, and control inputs of the
three carts under Algorithm 1 are shown in Fig. 4, respec-
tively. It can be observed that the actual state constraints and
the control inputs constraints are satisfied, and the closed-
loop system is stable. To illustrate the advantages of the
proposed Algorithm 1 in reducing computation and communi-
cation loads, the triggering instants and transmission instants
under the proposed Algorithm 1 and the algorithm in [22]
are shown in Figs. 5 and 6, respectively. Note that the con-
sumption of the computation resources caused by u = Kx
can be ignored, the total number of triggering and transmis-
sion instants can represent the consumption of the computation
and communication resources, respectively. It can be seen that
among all 300 steps, the total number of the triggering and
transmission instants are 12 and 276 in Fig. 5, while 11 and
67 in Fig. 6, respectively. We can see that the proposed com-
pound event-triggered DMPC enjoys lower computation and
communication loads compared with the algorithm in [22].

Fig. 6. Triggering instants (“×”) and transmission instants (“◦”) under
Algorithm 1.

VI. CONCLUSION

In this article, event-triggered DMPC for coupled nonlinear
systems subject to external disturbances has been studied. A
compound event-triggered DMPC strategy has been proposed
accordingly, including a compound triggering condition and a
new constraint tightening approach. In this strategy, the num-
ber of triggering instants associated with the computation and
communication load has been reduced significantly, and the
actual state constraints have been satisfied. Sufficient condi-
tions to guarantee the recursive feasibility of the proposed
algorithm and the stability of the closed-loop system have been
derived. The effectiveness of the proposed strategy has been
validated by a simulation example.

APPENDIX

PROOF OF LEMMA 2

The estimated error between the predicted state and the
actual one at the next triggering instant kr+1

i is calculated as
∥∥∥x
(

kr+1
i

)
− x̂∗

i

(
kr+1

i |kr
i

)∥∥∥
Pi

≤ Lfi

∥∥∥xi

(
kr+1

i − 1
)

− x̂∗
i

(
kr+1

i − 1|kr
i

)∥∥∥
Pi

+ ρi

+
∥∥∥∥∥∥

∑

j∈N u
i

gij

(
xj

(
kr+1

i − 1
))

−
∑

j∈N u
i

gij

(
x̃j

(
kr+1

i − 1|kr
i

))
∥∥∥∥∥∥

Pi

(36)

where∥∥∥∥∥∥

∑

j∈N u
i

gij

(
xj

(
kr+1

i − 1
))

−
∑

j∈N u
i

gij

(
x̃j

(
kr+1

i − 1|kr
i

))
∥∥∥∥∥∥

Pi

≤ �iLgij

(∥∥∥xj

(
kr+1

i − 1
)

− x̂∗
j

(
kr+1

i − 1|ηj(k
r+1
i − 1)

)∥∥∥
Pi

+
∥∥∥x̂∗

j

(
kr+1

i − 1|ηj

(
kr+1

i − 1
))

− x̃j

(
kr+1

i − 1|kr
i

)∥∥∥
Pi

)

≤ �iLgij

(∥∥∥xj

(
kr+1

i − 1
)

− x̂∗
j

(
kr+1

i − 1|kr
i

)∥∥∥
Pi

+ Niσ

)
.

(37)
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From the triggering condition in (14), the following inequality
can be obtained:
∥∥∥xi

(
kr+1

i − 1
)

− x̂∗
i

(
kr+1

i − 1|kr
i

)∥∥∥
Pi

≤ τi−ρi−�iLgij(τj+Niσ)
Lfi

.

(38)

Substituting (37) and (38) into (36) yields
∥∥∥x
(

kr+1
i

)
− x̂∗

i

(
kr+1

i |kr
i

)∥∥∥
Pi

≤ τi

which completes the proof.

APPENDIX B
PROOF OF LEMMA 3

For k = kr
i + 1, Vi(x̂∗

i (k
r
i |kr

i )) has been obtained at time kr
i

based on the optimal state sequence x̂∗
i(kr

i ), then

Vi(x̄i(k|k))− Vi
(
x̂∗

i

(
kr

i |kr
i

))

= −∥∥x̂∗
i

(
kr

i |kr
i

)∥∥
Pi

+ ‖xi(k)‖Pi − ∥∥x̂∗
i

(
k|kr

i

)∥∥
Pi

+
Ni−1∑

m=1

(
‖x̄i(k + m|k)‖Pi

− ∥∥x̂∗
i

(
k + m|kr

i

)∥∥
Pi

)

︸ ︷︷ ︸
�1

+ ‖x̄i(k + Ni|k)‖Pi
− ∥∥x̂i

(
k + Ni|kr

i

)∥∥
Pi︸ ︷︷ ︸

�2

+∥∥x̂i
(
k + Ni|kr

i

)∥∥
Pi

(39)

where x̂i(k+Ni|kr
i ) = fi(x̂∗

i (k+Ni−1|kr
i ),Kix̂∗

i (k+Ni−1|kr
i ))+∑

j∈N u
i

gij(x̃j(k + Ni − 1|kr
i )).

For �1, by virtue of Assumption 1 and the constructed
control input in (16), we iteratively obtain

∥∥x̄i(k + m|k)− x̂∗
i

(
k + m|kr

i

)∥∥
Pi

≤ Lfi

∥∥x̄i(k + m − 1|k)− x̂∗
i

(
k + m − 1|kr

i

)∥∥
Pi

+
∑

j∈N u
i

Lgij

∥∥x̃j(k + m − 1|k)− x̃j
(
k + m − 1|kr

i

)∥∥
Pi

. . .

≤ Lm
fi ei(k)+

∑

j∈N u
i

m−1∑

l=0

Lm−l−1
fi

Lgijξj(k + l|k)

=: χi(m) (40)

where ei(k) = ‖xi(k)− x̂∗
i (k|kr

i )‖Pi , and ξj(k + l|k) = ‖x̃j(k +
l|k)− x̃j(k + l|kr

i )‖Pi .
For �2, we obtain

�2 ≤ LfKi

∥∥x̄i(k + Ni − 1|k)− x̂∗
i

(
k + Ni − 1|kr

i

)∥∥
Pi

+
∑

j∈N u
i

Lgij

∥∥x̃j(k + Ni − 1|k)− x̃j
(
k + Ni − 1|kr

i

)∥∥
Pi
.

Using (40) yields

�2 ≤ LfKi
χi(Ni − 1)+

∑

j∈N u
i

Lgijξj(k + Ni − 1|k). (41)

Combining (39) with (40) and (41) yields

Vi(x̄i(k|k))− Vi
(
x̂∗

i

(
kr

i |kr
i

))

≤ −∥∥x̂∗
i

(
kr

i |kr
i

)∥∥
Pi

+
Ni−1∑

m=1

χi(m)+ ∥∥x̂i
(
k + Ni|kr

i

)∥∥
Pi

+ ei(k)+ LfKi
χi(Ni − 1)+

∑

j∈N u
i

Lgijξj(k + Ni − 1|k).

For kr
i + 1 < k < kr+1

i , the future control input sequence
ūi(k) is applied to the subsystem and Vi(x̄i(k − 1|k − 1)) is
obtained. Similarly, we can also obtain the difference between
Vi(x̄i(k|k)) and Vi(x̄i(k − 1|k − 1)) as

Vi(x̄i(k|k))− Vi(x̄i(k − 1|k − 1))

≤ −‖xi(k − 1)‖Pi + ‖xi(k)− x̄i(k|k − 1)‖Pi

+
Ni−1∑

m=1

‖x̄i(k + m|k)− x̄i(k + m|k − 1)‖Pi

+ ‖x̄i(k + Ni|k)‖Pi
− ∥∥x̂i(k + Ni|k − 1)

∥∥
Pi

+ ∥∥x̂i(k + Ni|k − 1)
∥∥

Pi
(42)

where x̂i(k + Ni|k − 1) = fi(x̄i(k + Ni − 1|k − 1),Kix̄i(k + Ni −
1|k − 1))+∑

j∈N u
i

gij(x̃j(k + Ni − 1|k − 1)).
Following a similar technique as the above, we obtain:

Vi(x̄i(k|k))− Vi(x̄i(k − 1|k − 1))

≤ −‖xi(k − 1)‖Pi +
Ni−1∑

m=1

χi(m)+ ∥∥x̂i(k + Ni|k − 1)
∥∥

Pi

+ ei(k)+ LfKi
χi(Ni − 1)+

∑

j∈N u
i

Lgijξj(k + Ni − 1|k)

where ei(k) = ‖xi(k) − x̄i(k|k − 1)‖Pi , ξj(k + l|k) = ‖x̃j(k +
l|k)− x̃j(k + l|k − 1)‖Pi .
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