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Abstract. Decision-making is one of the key technologies in the air
combat field. In this work, a game decision method based on an improved
shark smell optimization (SSO) algorithm is developed for unmanned
aerial vehicles (UAVs). The air combat situation assessment result of
multi-UAV is described as an uncertain set, and a game model of game
decision is established. Then, to upgrade the efficiency of game decision,
an improved θ-SSO algorithm is proposed. Finally, the simulation results
turn out the effectiveness of the algorithm.
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1 Introduction

In future air combats, UAVs will play a more important role with the advance-
ment of UAV technology [1]. Game decision-making has attracted much attention
because it can reflect the confrontational characteristics. [2].

In recent years, many valuable algorithms have been proposed on game deci-
sion field. In [3], the UAV swarm decision problem was solved by a mixed integer
linear programming method. In [4], a multi-UAV combat decision method based
on particle swarm optimization was studied, which verified the feasibility of par-
ticle swarm optimization in multi-UAV combat decision.

However, due to the complexity and variability of the battlefield environment,
the uncertainties in game decision are always inevitable [5]. Furthermore, these
uncertain parameters will directly affect the effectiveness of air combat decisions
[6]. Therefore, in order to make the decisions obtained more consistent with the
battlefield environment, it is necessary to study the problem of game decision
under uncertain information [7]. In fact, the uncertain game decision problem
can be solved by the wolf swarm algorithm [8] and the shark algorithm [9] as
uncertain optimization problem. However, due to the unpredictability of the
battlefield environment and the slow convergence speed of swarm optimization
algorithms, there are not many related research results at present.
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Furthermore, most studies on air combat decision cannot reflect the con-
frontation characteristics of the two sides. In actual air combat, attack-defense
confrontation is actually a game process between two sides. The optimal bene-
fit of air combat decision-making can be obtained by introducing game theory
[10]. In [11], a new weighted adaptive objective function is proposed to find the
optimal strategy by using the Nash equilibrium of the game, but the influence
of uncertain information on the decision results is not considered.

As discussed above, for the UAV uncertain decision-making problem, a new
game decision method is proposed based on an improved θ-SSO algorithm in
this paper. Firstly, a game model of decision-making with uncertain information
is established. Then, the solution of the Nash equilibrium is transformed into
a linear programming problem. To promote the efficiency of game decision, an
improved θ-SSO algorithm is proposed to solve the uncertain game decision
problem, and a simulation examples is provided to turn out the effectiveness of
the algorithm.

2 Problem Description

2.1 Uncertain Game Model

In actual air combat, the game of attack and defense is a zero-sum game. The
game model of decision-making can be established as

G =
{
N,SM , U

}
(1)

where N = {R,B} are the participants in the game, R is our UAVs, and B is
the enemy’s UAVs, SM =

{
sk

Ri, s
k
Bj

}
is the action space, sk

Ri is the i-th action
strategy for the k-th stage of our UAVs, sk

Bj is the j-th action strategy for the
enemy’s UAVs in the k-th stage, U =

{
uR

(
sk.i

)
, uB

(
sk.j

)}
is the utility of

each sides corresponding to the participating UAVs after selecting each possible
action combination, uR

(
sk.i

)
is the utility of our UAVs choosing the i-th action

strategy in the k-stage.
The payout function of multi-UAV air combat game under uncertain infor-

mation can be described as

f̃aij =
m∑

i=1

bab (uB + ΔuB) −
n∑

j=1

rba (uR + ΔuR) (2)

where bab and rba are the decision variables, bab=1 means that our a-th UAV
attacks the enemy’s b-th UAV, rba =0 means that the b-th UAV of enemy is
not assigned to attack our a-th UAV, uB = SB

z , uR = SR
z , SB

z is the overall
superiority of our UAVs, SR

z is the overall superiority of the enemy’s UAVs, and
ΔuB , ΔuR are the uncertain parameters.

Generally, reasonable air combat decision-making is carried out by reasonable
situation assessment. The air combat situation assessment is determined by an
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overall superiority function, which includes angle superiority, distance superiority
and energy superiority. The superiority of our a-th UAV to the enemy’s b-th UAV
can be determined as

SZab = k1 × SAab + k2 × SDab + k3 × SEab (3)

where k1, k2, k3 are the superiority weights, and SAab, SDab, SEab are the angle
superiority, distance superiority and energy superiority of our a-th UAV to the
enemy’s b-th UAV, SEab can be calculated from the UAV’s altitude and velocity,
and the detailed calculation can be referenced in [12].

To reflect the uncertain information of actual air combat, the uncertainty can
be described as an uncertain set. According to [13], the polyhedral uncertain set
for generating air combat situation assessment can be expressed as

D =
{

ua + Δua

∣
∣
∣
∥
∥
∥Ω− 1

2 Δu
∥
∥
∥ ≤ ηβ

}
(4)

where Ω is covariance of Δua, ηβ is given confidence probability.
According to Eq. (2), the payoff matrix can be determined as

Ãij =

y1 y2 · · · yn

x1

x2

...
xm

⎡

⎢
⎢
⎢
⎣

f̃a11 f̃a12 · · · f̃a1n

f̃a21 f̃a22 · · · f̃a2n

...
... · · · ...

f̃am1 f̃am1 · · · f̃amn

⎤

⎥
⎥
⎥
⎦

(5)

where x = (x1, x2, · · · , xm) is the mixed strategy of player R, and y =
(y1, y2, · · · , yn) is the mixed strategy of player B.

2.2 Linear Programming Model

According to the payoff matrix (5), the Nash equilibrium value is described as

ṽ1 = max
x∈Xn

min
1<j≤n

n∑

i=1

Ãijxi (6)

Equation (6) can be transformed into the following linear programming prob-
lem as follows.

ṽ1 = max ũ (x)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

Ãijxi > ũ (x)

x1 + x2 + · · · + xm = 1
xi > 0

Δu1 ∈ U1,Δu2 ∈ U2

i = 1, 2, · · · , n
j = 1, 2, · · · ,m

(7)
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where Δu1 ∈ U1, Δu2 ∈ U2, U1, U2 are the closed interval uncertain sets, and

ũ (x) = min
1<j≤n

n∑

i=1

Ãijxi.

However, due to the influence of uncertain parameters, the linear program-
ming problem (7) cannot be solved directly. Thus, the θ-SSO algorithm is con-
sidered in this paper.

3 Improved θ-SSO Algorithm

As a swarm optimization algorithm, the SSO algorithm was proposed according
to the ability of sharks for finding a prey [14]. The movement of sharks for finding
a prey depended on the odorant particle concentration is shown in Fig. 1. The
θ-SSO algorithm is developed based on the SSO algorithm, and the selection of
the direction is added during the search. But for the application requirements
of air combat decision-making, it is always required a faster decision-making
speed. Therefore, on the basis of θ-SSO, we consider the selection of the position
during the search, and propose an improved θ-SSO, which further improves the
optimization rate of the algorithm. Then, the linear programming problem (7) is
solved by the improved θ-SSO algorithm, which satisfies the requirement of the
rapidity of air combat. The improved θ-SSO algorithm is described as follows.

Fig. 1. The movement of sharks for finding a prey

(1) Initialization
The initial population of the possible locations is generated as{

X1
1 ,X1

2 , · · · ,X1
NP

}
, where NP is the population size, and the l-th initial posi-

tion vector X1
l can be expressed as follows

X1
l =

[
x1

l,1, x
1
l,2, · · · , x1

l,ND

]
(8)

where x1
l,p is the p-th dimension of the initial position of the l-th shark. The

superscript ‘1’ in Eq. (8) is the first iteration of the improved θ-SSO algorithm.
According to [12], x1

l,p can be obtained by the following equations

θh
l =

[
θh

l,1, θ
h
l,2, · · · , θh

l,ND

]
(9)
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xh
l,p =

xmax
l,p − xmin

l,p

2
sin θk

l,p +
xmax

l,p + xmin
l,p

2
(10)

where p = 1, . . . , ND , xh
l,p ∈

[
xmin

l,p , xmax
l,p

]
and θh

l,p ∈ [−π/2, π/2].
(2) Evolutionary process
During this process, the shark’s position and speed evolve according to its

movement towards its prey. The improved θ-SSO algorithm consists of NP veloc-
ity vectors,

[
V 1
1 , V 1

2 , · · · , V 1
NP

]
.

According to the observation of sharks in nature, the motion of sharks can be
divided into “forward motion” and “rotational motion” in the improved θ-SSO
algorithm. Early in the iteration, the sharks move forward. This motion can be
mathematically established as follows.

V 1
l =

[
v1

l,1, v
1
l,2, · · · , v1

l,ND

]
(11)

V h
l = ηhR1∇ (OF )

∣
∣
∣Xh

l
(12)

where V 1
l is the l-th velocity vector, l = 1, . . . , NP , h = 1, . . . , hmax, h and

hmax represent the h-th iteration and the maximum number of the iteration
respectively, R1 randomly distributed within [0,1], and according to Eq. (7), the

objective function is OF =
n∑

l=1

Ãlpxl − ũ (x), and ∇ (OF ) defines its gradient.

Considering the speed in the (h−1)-th iteration vh−1
l,p , the h-th speed can be

obtained as
∣
∣vh

l,p

∣
∣ = min

{∣
∣
∣
∣ηhR1

∇ (OF )
∂xp

∣
∣
∣
∣xh

l,p

+ αhR2v
h−1
l,p

∣
∣
∣
∣ ,

∣
∣
∣βh.vh−1

l,p

∣
∣
∣
}

(13)

where ηh ∈ [0, 1] and αh ∈ [0, 1] can be designed by the designer, R2 randomly
distributed within [0,1], and βh is the velocity limit for the h-th iteration.

The (h + 1)-th position of the shark in forward motion can be defined as

Y h+1
l = Xh

l + V h
l .Δth (14)

where Δth = th+1 − th.
The rotational motion of the shark is modeled as

Zh+1,m
l = Y h+1

l + Rm
3

(
Y best

l − Rm
4 Y h+1

l

)
+ Rm

5

(
Y h+1

l,1 − Y h+1
l,2

)
(15)

where Rm
3 , Rm

4 , Rm
5 are three random numbers uniformly distributed in the

range of [−1,+1], Y best
l is the fastest position in Y 1

l , Y 2
l , . . . , Y k+1

l , and Y h+1
l,1 ,

Y h+1
l,2 are two random selected positions in Y 1

l , Y 2
l , . . . , Y h+1

l .
Y best

l in Eq. (15) can provide the positive guidance for the directional selec-
tion in rotational motion. The improved θ-SSO algorithm selects the quickest
point instead of randomly picking the rotational direction. This learning mech-
anism allows the direction of the rotational motion to be closer to the best
solution.
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Fig. 2. Multi-UAV air combat game decision process

The position of the shark is chosen as the best of these points, which is the
optimization problem of OF .

Xh+1
l = arg max

{
OF

(
Y h+1

l

)
, OF

(
Zh+1,1

l

)
, . . . , OF

(
Zh+1,M

l

)}
(16)

where arg max {·} returns the parameter with the maximum value of OF (·).
The multi-UAV air combat game decision process is shown in Fig. 2.

4 Simulation Examples

Assume that the capability of UAVs in a certain air combat is identical. The red
side includes R1 and R2, and the blue side includes B1, B2, B3, and B4. The
position information of both UAVs is obtained based on sensor data, as shown
in Table 1.

Assuming that the detection distance of UAV is 80, the maximum attack
distance is 150. The set of game decision strategies for both side is shown in
Table 2.
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Table 1. The location information of the UAVs at a certain moment in the air battle

UAV number Abscissa x (km) Altitude z (km) Velocity v (km/h) Angle (◦)

R1 0 90 60 0

R2 30 30 70 30

B1 100 10 80 100

B2 50 80 60 50

B3 90 10 40 90

B4 120 0 60 120

Table 2. Game decision strategy set

Strategy Implication Strategy Implication

x1 Our drone R1 attacks B3 y1 Enemy drone B3 attacks R1

x2 Our drone R1 attacks B4 y2 Enemy drone B3 attacks R2

x3 Our drone R1 attacks B5 y3 Enemy drone B4 attacks R1

x4 Our drone R1 attacks B6 y4 Enemy drone B4 attacks R2

x5 Our drone R2 attacks B3 y5 Enemy drone B5 attacks R1

x6 Our drone R2 attacks B4 y6 Enemy drone B5 attacks R2

x7 Our drone R2 attacks B5 y7 Enemy drone B6 attacks R1

x8 Our drone R2 attacks B6 y8 Enemy drone B6 attacks R2

The polyhedral uncertain set is constructed based on Eq. (5). The Nash equi-
librium is solved by the improved θ-SSO algorithm. Set the population number
NP = 10, the maximum number of iterations hmax = 1000, ηh = 0.6, αh = 0.6
and the speed limit rate βh = 0.8. After initializing the shark population, each
shark executes forward and rotating motions, with the following results:

x1 = 0.0136, x2 = 0.0477, x3 = 0.9245, x4 = 0.0142, ũ (x) = 0.0519
x5 = 0.0241, x6 = 0.0186, x7 = 0.0684, x8 = 0.8889, ũ (x) = 1.0147

The result of game decision is the UAV R1 of red side attacks the UAV B5
of blue side, and the UAV R2 of red side attacks the UAV B6 of blue side.

The fitness function value of the improved θ-SSO algorithm and PSO algo-
rithm proposed in [4] as shown in Fig. 3. The improved θ-SSO algorithm con-
verges substantially faster than PSO. At the same time, the optimal solution
found by PSO is not as large as the solution found by the improved θ-SSO algo-
rithm, so it is more suitable to apply the improved θ-SSO algorithm to solve this
target game allocation problem.
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Fig. 3. Comparison curve between particle swarm algorithm and the improved θ-SSO
algorithm

5 Conclusion

A new game decision method is proposed based on an improved θ-SSO algorithm
in this paper. Firstly, a game model of decision-making with uncertain informa-
tion is established. Then, the solution of the Nash equilibrium is transformed
into a linear programming problem. To promote the efficiency of game decision,
an improved θ-SSO algorithm is proposed to solve the uncertain game decision
problem, and a simulation examples is provided to turn out the effectiveness of
the algorithm.
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