
 

Abstract— The objective of this study is to design a game 

decision-making method for the air combat of multiple 

unmanned air vehicles (multi-UAV) with uncertain 

information, which is based on flexible and robust 

optimization. Aiming at the problem that the Nash 

equilibrium of the UAVs air combat game under uncertain 

information is not easy to solve, this paper proposes a new 

method for solving the Nash equilibrium of the air combat 

game under uncertain information. First of all, the interval 

payoff matrices of both sides are obtained according to the air 

combat superiority evaluation method. Secondly, the theory of 

obtaining the Nash equilibrium of a game by solving a linear 

programming problem is reviewed. Based on this idea, a novel 

method is proposed for solving the air combat game problem 

of multi-UAV with uncertain information, which is achieved 

by transforming it into a linear programming problem with 

uncertain parameters. Finally, the effectiveness of the method 

is verified by simulation, which shows that our method can 

provide new tools for solving problems in air combat with 

Uncertain Information. 
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I. INTRODUCTION

In the complex air combat environment, due to sensor 
accuracy limitations, complex environment interference, 
packet loss in data transmission, etc, it is often difficult to 
directly obtain the precise parameters of targets, the adopted 
firepower distribution strategy, maneuver strategy, and 
tactical intention. Therefore, the obtained air combat 
information has the characteristics of uncertainty and 
incompleteness [1-3]. How to effectively use the incomplete 
air combat information obtained by UAVs and ground 
multi-source sensors to predict target parameters, and make 
autonomous decisions in UAVs air combat based on the 
prediction results, is of great significance for our country's 
UAVs in complex and changeable environments [4-7]. The 
key to successfully targeting enemy objectives and 
eventually winning the entire air combat is to use the correct 
tactics. At present, the research of UAVs air combat based 
on partial data is limited, and the existing research results are 
mainly divided into two types. The first type is to acquire 
knowledge and expand models by using data mining and 
data fusion, and then complete or fill the data. According to 
the reference [8], the air combat decision is more realistic by 
constructing a data mining function based on the battlefield 
environment. In the complicated air warfare situation, 
reference [9] uses the measurement error as an influencing 
factor to solve the fitness function value of an uncertain 
target and uses the IVIFS method for data fusion processing. 
The biggest problem of this type of method is that data 
mining and data fusion methods have certain limitations, 
which cannot guarantee the accuracy of the complete data. 
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When many targets exist at the same time, the data mining 
speed is slow which cannot satisfy the real-time 
requirements of air combat. 

The second type is to obtain the approximate value range 
of the target parameters, and use the optimization algorithm 
to transform the decision-making problem of the air combat 
game under the interval information into the 
decision-making problem of the air combat game under the 
certain information, so as to solve the problem [10]. 
Reference [11] establishes a mathematical model of interval 
optimization based on interval numbers, and introduces the 
concept of interval possibility.  Reference [12] improves the 
TOPSIS algorithm based on the genetic algorithm, which 
makes the calculation result of the weight feature of the 
interval number more accurate. 

The second type is mainly to transform the interval 
information obtained by the receiving equipment such as 
sensors into definite information through optimization 
model processing, and finally transform the air combat 
problem of incomplete information into the air combat 
problem under definite information.  At present, there are 
many mathematical methods of uncertainty optimization 
based on interval numbers, but few of them are applied to air 
combat.  In addition, in the complex air combat environment, 
the obtained interval information cannot know its specific 
distribution function, the interval needs to be obtained by 
other methods such as the interval probability. Accurate 
parameters cannot judge whether they meet the real situation, 
so it may lead to decisions which are too aggressive or 
conservative. 

To sum up, due to the complexity of the battlefield 
environment, air combat situation assessment, task 
allocation, and maneuver decision-making under incomplete 
information have become an important research direction for 
UAVs air combat.  There are many problems to be solved. 

II. UNCERTAIN INFORMATION AIR COMBAT

GAME PAYOFF MATRIX BASED ON INTERVAL

NUMBER. 

 The game payoff matrix refers to the matrix formed from 

the game idea based on the gains or losses of both parties, 

which defines the selection strategy and payoff value of the 

game between the two parties. The benefits or utilities of 

different participants are the payoffs. The payoff matrix A

of the multi-UAV uncertain information air combat game 

based on the interval number is defined as follows: 
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where [ , ]L U

ij ij ija a a  is the payoff range of our UAVs when 

our UAVs adopts i strategy and the enemy UAVs adopts 

 j  strategy, m and n are the number of our UAVs strategies 

and the number of enemy UAVs strategies, respectively. 

III.  THE RELATIONSHIP BETWEEN MATRIX 

GAMES AND LINEAR PROGRAMMING 

 A strategy combination 
* *( , )x y is called a mixed-strategy 

Nash equilibrium, if and only if there is a number v  such 

that 
* * * *

1 2=( , , , )mx x x x  is a solution of inequality (2): 
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and 
* * * *

1 2( , , , )ny y y y  is the solution of equation (3): 
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IV. UNCERTAIN INFORMATION AIR COMBAT 

GAME BASED ON FLEXIBLE ROBUST 

OPTIMIZATION. 

A. Uncertain Information Linear Programming Based on 

Robust Optimization. 

The basic problem of linear programming under robust 

optimization can be described as: 

max

. .       ,

         X 



 



Tz c x

s t Ax b A b U

x

               (4) 

 
where x and c represent the vectors in the range of real 

numbers, X  is defined as the feasible space of constraint 

variable x , A  is the uncertainty coefficient matrix of 

variable x , b  is the vector of uncertain parameters on the 

right-hand side of the inequality, and U  is the space set of 

all uncertain parameters. 

For any constraint in the basic linear programming 

problem (4), considering the i -th constraint containing 

uncertain parameters, the uncertain parameters ija  and 

ib can be expressed as: 

0

ˆ ,   J

 

ij ij ij ij i

i ii i

a a a j

b b b





   

 
                  (5)      

where
ija and ib are the nominal value of uncertain 

parameters, ˆ
ija  and ˆ

ib  are the positive perturbation 

amplitudes, ij
 and 0 i  are the control variables whose size 

are in [-1,1] to control the fluctuation range of parameters; 

J i represents the i -th constraint  collection of uncertainty 

parameters. From equation (5), the i -th constraint in 

equation (4) is as follows: 

0
ˆˆmax

i i

ij j ij ij j i i i
U

j J j J

a x a x b b


 


 

   
    

    
           (6) 

According to the position of different uncertain 

parameters in the constraints, robust optimization problems 

can be divided into four categories, namely: only the left 

end of the constraint contains uncertain parameters, only the 

right end of the constraint contains uncertain parameters, 

both ends contain uncertain parameters, and the objective 

function including uncertain parameters, because the 

purpose of this paper is to solve the Nash equilibrium 

problem based on linear programming. It can be seen that 

after the Nash equilibrium problem is transformed into a 

linear programming, the constraint right-hand coefficient 

 b is a definite value, and there are no uncertain parameters 

in the objective function. Therefore, the robust optimization 

problem belongs to the problem with only the left-end 

uncertainty. So the i-th constraint in the above linear 

programming problem is equivalent to: 

ˆ[max{ }]





 

  
i i

ij j ij ij j i
U

j J j J

a x a x b                 (7) 

Different uncertainty sets have obvious influence on 

the results in the robust optimization problem. When the 

complexity of the uncertainty set model increases, the 

answer becomes increasingly complicated. When the 

uncertainty set's limit is wider, the ideal solution obtained is 

more conservative and unrealistic. The ellipsoid, box, and 

polyhedron are the most common uncertain sets. Polyhedral 

uncertain sets are more suitable for solving 

multi-constrained linear programming problems than the 

other two uncertain sets. Polyhedral uncertain sets have the 

following mathematical expressions: 

 1 1
   
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  
      

  


i

j

j J

U              (8) 

where   is the adjustable parameter. 

The robust equivalence problem of inequality (7) 

under polyhedral-type uncertain sets is: 

ˆ ,

,


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
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
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


i

ij j i i

j J

i ij j i

j j j i

a x p b

p a u j J

u x u j J

                       (9)                     

The value range of the adjustable parameter   is 

max0 j   ; 
maxj  which represents the number of 

uncertain parameters in the i  constraint.  ip and 
ju  are 

positive intermediate variables introduced for the 

convenience of calculation. 
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The set robust optimization model is to solve the 

problem of the maximum value of the linear programming 

solution, which is in line with the conventional steps to 

obtain the Nash equilibrium solution of the enemy. 

Therefore, a model for obtaining the Nash equilibrium 

solution of the enemy is firstly established, and the specific 

expression is as follows: 
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where 
1 1ˆ , [ , ]
   

   i i

ij ij ij ij ij ij ija a a c c . It has been 

verified that the Nash equilibrium of the enemy UAVs 

solves the linear programming problem as follows: 
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                           (11) 

When creating a Nash equilibrium linear programming 

model for our air combat game with uncertain information, 

we must firstly transform the linear programming problem 

into a problem of finding the maximum value. To do so, we 

must find the enemy's game payoff matrix 
'A , where 

' ( )  TA A ,and then the next steps are the same as finding 

the enemy's solution to Nash Equilibrium linear 

programming models.  

B. Confidence Interval Models for Uncertain Parameters. 

In the multi-UAV air combat scenario with uncertain 

information, it is necessary to set the perturbation interval 

and probability characteristics of uncertain parameters 

effectively. 

Considering the confidence level 1  i , the 

uncertainty parameter 
ija  can be expressed as: 

1 1ˆ  
 i i

ij ij ij ija a a                          (12) 

where
1 ( ) (1 )

2

    
i i i

ij

F F
a  , 

1
(1 / 2) ( / 2)

ˆ
2

  


 
i i i

ij

F F
a  .  ( )F  represents the 

inverse function of the probability distribution function of 

the normal distribution. The specific value can be obtained 

by normalizing the normal distribution and checking the 

standard normal distribution table. The interval range of the 

uncertain parameter is obtained according to the value of 

ij .  1  i  represents the confidence level of the uncertain 

parameter under the i  constraint.
1ˆ  i

ija  represents the 

perturbation amplitude for which the confidence level of the 

uncertain parameter is 1  i
, and 

maxˆ
ija  represents the 

perturbation amplitude of completely credible interval.  If 

extremely small probability values and extreme values are 

needed to remove, one can choose 
1ˆ  i

ija  when the 

confidence level is 99% as 
maxˆ
ija .  Let 

1 maxˆ ˆ
 i

ij ij ijc a a  be 

the independently adjustable parameter of the uncertain 

parameter, and 
ijc  be the ratio between the perturbation 

ranges 
1ˆ  i

ija  and 
maxˆ
ija .  It is easy to know that when 1ijc , 

all uncertain situations are considered to be within the 

interval. Similarly, if 1 0i  , the interval number ija  

degenerates to a constant at this time, and the robust 

optimization problem is transformed into a deterministic 

optimization problem at this time. We restrict ij  with 

independently adjustable parameters, and ijc  can show the 

probability distribution characteristics of the perturbation 

interval. Then equation (12) can limit the range of the 

values of 
ij : 

[ , ]ij ij ijc c                                  (13) 

The air combat game payoff matrix A  is an interval 

number matrix, and the interval elements in it need to be 

processed.  The average value of the values at both ends of 

the interval number is set as the nominal value, and the 

interval number is regarded as a normal distribution with 

the nominal value at the center. The distribution of the 

interval number is inversely solved by the numerical values 

at both ends of the interval number.  The process is as 

follows: 

Assuming that an interval number [ , ]L U

ij ij ija a a  in A  

follows a normal distribution 2( , )ij ijN   , the interval 

confidence level is 1 i , and the standard normal 

distribution is (0,1)N , through the normal distribution 

normalization rule: 

1
( ) / 2

(1 )

U L U

ij ij ij

i

ij

a a a





 

          (14) 

So we obtain 

1

( ) / 2

(1 )

U L U

ij ij ij

ij

i

a a a




 


 
                     (15) 

where 
1  is the inverse function of the distribution 

function of the standard normal distribution, which can be 

known by checking the normal distribution table. 

C. A Robust Optimization Model for Flexible Uncertain 

Sets. 

Based on the mathematical description of uncertainty 

parameters in equation (12), 
ijc  is used as an independent 

adjustable parameter for all uncertain elements. The 

uncertain parameters are flexibly bounded by independent 

ijc , because the polyhedral uncertain sets are more suitable 

for solving multi-constrained linear programming problems.  
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The establishment of a flexible polyhedron type robust 

optimization uncertainty set is expressed as follows: 
1

'

1 max max max

1

ˆ
, ,

ˆ

i

i

ij ij

ij i

j J ij ij

a
U j j c j J

c c a


 





     
         
     

 (16) 

The flexibility of the flexible uncertainty set is higher than 

that of the traditional norm uncertainty set, and different 

confidence levels and perturbation ranges can be set for 

different sets. Compared with the traditional norm 

uncertainty set, the conservatism is reduced and the scale is 

smaller.  The calculation results are more accurate. 

Through the flexible and robust optimization of the 

uncertain set, the robust optimization problem under the 

flexible and uncertain set can be derived. 

For the robust optimization problem under the uncertain set 

of flexible polyhedron type (7) is equivalent to: 
1

max

maxˆ ,

,

i

ij j i i

j

i ij ij j i

j j j i

a x j p b

p c a u j J

u x u j J
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

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
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



                    (17) 

where 
ju  is a positive intermediate variable. 

Based on the flexible and robust optimization problem 

of polyhedron type, the Nash equilibrium linear 

programming problem of air combat game under uncertain 

information is given.  After verification, the linear 

programming problem of the enemy’s Nash equilibrium 

solution is expressed as follows: 

1

max

max

1

     max
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               (18) 

V. SIMULATION 

Assume that the payoff matrix A  of the multi-UAV air 
combat game under our uncertain information is: 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

                                                                                                                                                                         

A

       















7

8

9

[-0.358, -0.177] [-0.361, -0.202] [-0.371, -0.212] [-0.345,-0.169] [-0.383,-0.216] [-0.327,-0.163] [-0.405,-0.224] [-0.314,-0.155]

[-0.462, -0.264] [-0.465,-0.289] [-0.478,-0.299] [-0.449,-0.256] [-0







.496, -0.303] [-0.431,-0.250] [-0.509,-0.311] [-0.418,-0.242]

[-0.366,-0.175] [-0.369,-0.200] [-0.382,-0.210] [-0.353,-0.167] [-0.400,-0.214] [-0.335,-0.161] [-0.413,-0.222] [-0.322,-0.153]

[-0.432,-0.215] [-0.435,-0.240] [-0.448,-0.250] [-0.419,-0.207] [-0.466,-0.254] [-0.401,-0.201] [-0.479,-0.262] [-0.388,-0.193]

[-0.454,-0.250] [-0.457,-0.275] [-0.470,-0.285] [-0.441,-0.242] [-0.488,-0.289] [-0.423,-0.236] [-0.501,-0.297] [-0.476,-0.228]

[-0.416, -0.203] [-0.419,-0.228] [-0.432,-0.238] [-0.403,-0.195] [-0.450,-0.242] [-0.385,-0.189] [-0.463,-0.250] [-0.372,-0.181]

[-0.396,-0.224] [-0.399,-0.249] [-0.412,-0.259] [-0.383,-0.216] [-0.430,-0.263] [-0.365,-0.210] [-0.443,-0.271] [-0.352,-0.202]

[-0.328,-0.128] [-0.331,-0.153] [-0.344,-0.163] [-0.315,-0.120] [-0.362,-0.167] [-0.297,-0.114] [-0.375,-0.175] [-0.284,-0.106]

[-0.520,-0.290] [-0.523,-0.315] [-0.536,-0.325] [-0.507,-0.282] [-0.554,-0.329] [-0.489,-0.276] [-0.567,-0.337] [-0.476,-0.268]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Due to 
9 8( )  ijA a  , assuming that the interval numbers 

in the payoff matrix obey a normal distribution, the 
confidence level is 0.997, and the distribution function of 

each interval number 
ija  can be inversely solved by 

equation(15) as: 

2 2 2

11 12 18

2 2

91 92

~ ( 0.268,0.03 ), ~ ( 0.282,0.03 ), , ~ ( 0.235,0.029 )

                                                                                        

~ ( 0.405,0.043 ), ~ ( 0.419,0.039 ),

  

 

a N a N a N

a N a N 2

98, ~ ( 0.372,0.038 )

 
 
 
  a N

According to the probability distribution, the maximum 

perturbation assignment 
max

9 8
ˆ( ) ija  is: 

max

9 8

0.090 0.085 0.080 0.088 0.083 0.082 0.091 0.079

0.100 0.088 0.090 0.097 0.097 0.091 0.099 0.088

0.096 0.085 0.086 0.093 0.093 0.087 0.096 0.085

0.109 0.098 0.099 0.106 0.106 0.100 0.109 0.09

ˆ( )ija  

8

0.102 0.091 0.093 0.099 0.100 0.094 0.102 0.124

0.107 0.096 0.097 0.104 0.104 0.098 0.107 0.096

0.086 0.075 0.077 0.084 0.084 0.078 0.086 0.075

0.100 0.089 0.091 0.098 0.098 0.092 0.100 0.089

0.115 0.104 0.106 0.113 0.113 0.107 0.115 0.104 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

After completing the preprocessing of the parameters, 

the following is based on the flexible robust optimization of 

polyhedron type to solve the Nash equilibrium linear 

programming problem with uncertain information.  Since 
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the robust optimization model set in this paper is to solve 

the problem of finding the maximum value of linear 

programming, it is in line with finding the enemy’s Nash 

equilibrium.  The equilibrium solution is a normal step, so 

we first obtain the enemy Nash equilibrium solution.  The 

linear programming problem model can be known from 

equation (18): 
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Based on the improved artificial fish swarm algorithm 

to solve the above multi-constraint linear programming 

problem. The calculation result can be expressed as:
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From the results of the above formula, it can be seen that 

the Nash equilibrium solution *y  of the enemy drone is: 

* (0,0,0,0,0.495,0,0.505,0)y , and the Nash equilibrium 

value of the game  0.262GV . 

Since the flexible and robust optimization model defined 

above is to obtain the maximum value, in order to facilitate the 

calculation of the Nash equilibrium solution of our UAVs, the 

payoff matrix 
'A  of the enemy air combat game needs to be 

calculated. It is easy to know 
' ( )  TA A  according to the 

definition of the payoff matrix, and the specific solution steps 

are as follows the paper describes the process of finding the 

Nash equilibrium solution of the enemy air combat game is 

similar, and the Nash equilibrium solution of our UAVs is 

obtained by calculating the solution. It can be obtained 

comprehensively that our drone selects the first strategy with a 

probability of 0.392, the seventh strategy with a probability of 

0.608, the enemy drone selects the fifth strategy with a 

probability of 0.495, and selects the fifth strategy with a 

probability of 0.505.  7 strategies, UAVs on both sides of the 

enemy will reach the Nash equilibrium state. 

The simulation analysis shows the effectiveness of the 

research method in solving the multi-UAV cooperative air 

combat game problem under uncertain information.  It can be 

seen that the method of the present invention improves the 

anti-interference ability of uncertain information processing, 

can effectively reduce the decision-making risk in air combat, 

and directly uses the game result as the decision-making basis 

to provide support for the decision-making of UAVs aerial 

uncertain air combat. 

VI. COCLUSION 

In this paper, a decision-making method based on flexible 

and robust optimization is designed.  A new technology of air 

combat with uncertain information is designed, which aims to 

solve the difficult problem of Nash equilibrium of UAVs air 

combat game under uncertain information. According to the 

evaluation results of the multi-UAV air combat advantage 

based on uncertain information based on the interval number, 

the interval number benefit matrix of both sides is obtained, 

and then the method of solving the Nash equilibrium problem 

as a linear programming problem is given. The game problem 

of air-to-air combat is transformed into a linear programming 

problem with uncertain parameters. Finally, the effectiveness 

of the method is verified by simulation, which provides a 

solution to the problem of inaccurate information in air 

combat. Future work will design robust optimization methods 

for more complex air combat decision scenarios. 
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