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Abstract—The notion of constrained common invariant
subspaces (CCISs) is proposed in this article as a gen-
eralization of the well-known invariant subspace to study
the structural properties of multiple matrices. Specifically,
some necessary and sufficient conditions for the existence
of a CCIS are established to provide a methodology to
compute such a CCIS. Then, the properties of CCISs and
their relation to common eigenvectors are revealed. The
existence of common eigenvectors leads to the existence of
CCIS, but not vice versa, so the established CCIS can reveal
the structural properties of multiple matrices better than
common eigenvectors can. The established CCIS is ap-
plied to the reducibility of Fornasini–Marchesini (F-M) state-
space models, i.e., the necessary and sufficient conditions
and the related algorithm for reducibility of F-M models are
developed. Finally, a gain-scheduled state-feedback con-
trol is proposed for a rational parameter system to further
demonstrate the superiority of the established CCIS.

Index Terms—Invariant subspace (IS), order reduction,
rational parameter system, state-feedback control.

I. INTRODUCTION

THE invariant subspace (IS) of a single square matrix has
been extensively studied and applied as the so-called ge-

ometric control theory for conventional linear time-invariant
systems [1], [2], [3]. The IS has found application in system
identification, analysis, and design, e.g., identification [3], [4],
reducibility (or minimality) [5], [6], controllability analysis [7],
observability analysis [8], linear-quadratic mean field con-
trol [9], and state feedback and observer design [10]. An essential
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application of the IS is to clarify the internal relationship between
reducibility (or minimality) and controllability/observability in
the framework of the geometric approach [6]. Consider a linear
system represented by

x(i+ 1) = Ax(i) +Bu(i), x ∈ R
r, u ∈ R

q (1a)

y(i) = Cx(i) +Du(i), y ∈ R
p. (1b)

If there exists an IS W under the state matrix A satisfying
Cw = 0 for every w ∈ W , then the linear system of (1) is
not observable and can be exactly reduced [11]. Other concepts
and their applications related to the IS, such as controlled IS
and conditioned IS, have been discussed in several books (e.g.,
[6], [12]).

However, in many practical complex systems, the dynamic
state vector of a system is related to multiple matrices. For
example, the Fornasini–Marchesini (F-M) (state-space) models,
in contrast to traditional linear state-space models, propagate in-
formation in n different (n ≥ 2) independent directions and cor-
respondingly have n state-space matrices A1, . . . , An ∈ R

r×r

[13], [14], [15]. The F-M has received considerable attention
because it can model many practical systems, e.g., river pollution
modeling [16] and distributed grid sensor networks [17]. Linear
parameter-varying (LPV) systems are another important system
class [18], [19], where the dynamic state vector is related to
multiple matrices Ai. Specifically, the parameter-varying state
transition can be expressed as A(θ) = ∑n

i=1 Aiθi where θi
denotes the time-varying parameters.

Therefore, to study the structural properties of multiple square
matrices, the generalized common IS (CIS) has recently attracted
interest [20], [21], [22], [23]. Pastuszak revealed in [22] that CIS
plays an important role in quantifier elimination theory. Arroyo
et al. showed in [20] that CIS can overcome the challenges
inherent in appropriately modeling graph differences while re-
taining sufficient model simplicity to render estimation feasible.
However, the existence conditions and computation of CIS
remain a difficult problem [22], [23] because even generalizing
the results of IS to CIS is a long-standing goal and challenge
for researchers. Considerable effort has been made to address
this difficult problem. In [24], Shemesh presented a computable
condition for the existence of a common eigenvector (CE), i.e.,
a special case of CIS with dimension one [25], of two matrices,
which is generalized to a finite number of matrices in [26].
In [27], although the case of two matrices is considered, Al’pin
and Ikramov studied the CIS of dimensions greater than one;
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however, they assumed that given matrices have pairwise differ-
ent eigenvalues, as noted in [25]. Arapura and Peterson in [23]
provided a general existence condition of CIS for an arbitrary
finite number of matrices by converting the computation of CIS
to find the projective variety of a series of symbolic equations
by applying the Gröbner basis technique, which requires knowl-
edge of the dimensionality of CIS. Moreover, the Gröbner basis
technique is useful for solving polynomial equations [28], but
it is time-consuming and difficult to obtain solutions for a large
number of variables [29]. Consequently, applying the Gröbner
basis method to large-scale matrices is a challenging problem.

One approach to partially avoid this difficulty is to study the
CIS with certain appropriate constraints. To this end, we recently
established a notion of constrained CE (CCE) in [30], i.e., the
1-D CIS with a basis vector w satisfying Cw = 0. A necessary
and sufficient condition for the existence of a CCE was also given
in [30]. However, the existence conditions and computation of
the more general CIS with constraints and dimensions greater
than one remain unsolved.

Given the above background, this article aims to establish a
constrained CIS approach such that the structural properties of
all the multiple square matrices can be explored. Specifically, a
new notion called constrained CIS (CCIS) is presented, and the
necessary and sufficient conditions for the existence of a CCIS
are established. Then, the properties of CCIS and its relation to
CE are revealed. The existence of a CE leads to the existence of
a CCIS, but not vice versa, so the established CCIS can reveal
the structural properties of multiple matrices better than the CE
can. Based on the advantages of CCIS to reveal the structural
characteristics of multiple matrices, it has been applied to F-M
models, where the sufficient and necessary conditions and the
related algorithms are developed for the reducibility of the F-M
models. Moreover, gain-scheduled state-feedback control is pro-
posed for a rational parameter system, the numerical complexity
of which can be greatly reduced by the established CCIS.

The rest of the article is organized as follows. In Section II,
the notion of CCIS is given; then, the necessary and sufficient
conditions for the existence of CCIS are established. Section III
reveals some properties of CCIS. Section IV applies the estab-
lished CCIS to F-M models and presents sufficient and necessary
reducibility conditions for the F-M models. Section V proposes
an H∞ gain-scheduled state-feedback controller synthesis for
rational parameter systems. Finally, Section VI concludes this
article.

The following notations will be adopted in this article. The
r-dimensional real column and row vector spaces are denoted
by R

r and R
1×r, respectively. Let R(θk) be the field of rational

functions in variables θk1, . . . , θkn over R, Rm×l be the class
of m× l matrices with entries in R, and R

m×l(θk) be the class
of m× l matrices with entries in R(θk). We denote the positive
integers by Z+. For a number n ∈ Z+, let N represent the set
{1, . . . , n}. Denote by dim(W) the dimensionality of the space
W . A zero matrix with proper size and a matrix of specified
size p× q are correspondingly denoted by the symbols 0 and
0p×q . For a matrixM∈ R

p×q , let spanrow(M) denote the space
spanned by the row vectors of M; the space spanned by the
vectors v1, . . . ,vr is denoted by span(v1, . . . ,vr); the kernel

of M is ker (M) = {η ∈ R
q :Mη = 0}. A� stands for the

transpose of A. {A}s represents the sum of A and its transpose,
i.e., {A}s := A+A�.

II. CONSTRAINED COMMON IS

In this section, the notion of CCIS will be generalized from the
notions of CIS [22] and CCE [30]. Then, the conditions for the
existence of CCIS, which provide a technique computing a CCIS
and play an essential role in studying the structural properties of
multiple square matrices, will be developed.

Let A1, . . . , An ∈ R
r×r, B ∈ R

r×q, C ∈ R
p×r, and A =

{A1, . . . , An}. We present the following notions.
Definition 1: A subspace W ⊆ R

r is called a right CIS of
A1, . . . , An if

A1w ∈ W (2a)

... (2b)

Anw ∈ W (2c)

for all w ∈ W [22]. Dually, W ⊆ R
r is called a left CIS of

A1, . . . , An if

w�A1 ∈ W (3a)

... (3b)

w�An ∈ W (3c)

for all w ∈ W .
Definition 2: A right CIS W of A1, . . . , An is said to be

constrained byC ifCw=0 for allw ∈ W . Dually, a left CISW
of A1, . . . , An is said to be constrained by B if w�B=0 for all
w ∈ W . If it is not necessary to indicate the associated matrices
explicitly, such a subspace will be referred to as a right/left
constrained CIS or CCIS. A right/left CCISW is called trivial
if dim(W) = 0; otherwise, it is called nontrivial.

Definition 3: The matrix functionsLk(A, C) andMk(A, C)
are recursively defined by

Lk(A, C) :=

⎡
⎢⎣
Mk−1(A, C)A1

...
Mk−1(A, C)An

⎤
⎥⎦ ∈ R

pnk−1×r (4a)

Mk(A, C) :=

⎡
⎢⎣
L1(A, C)

...
Lk(A, C)

⎤
⎥⎦ ∈ R

p(1−nk)
1−n ×r (4b)

withM1(A, C) = L1(A, C) = C and k = 2, . . . ,∞.
The existence conditions of a right CCIS can be formulated

to find a kernel of an infinite matrix as follows.
Theorem 1: There exists a nontrivial right CIS W of

A1, . . . , An ∈ R
r×r constrained by C ∈ R

p×r if and only if
M∞(A, C) is rank deficient. Moreover

W = ker (M∞(A, C)) (5)

with

M∞(A, C) = lim
k→∞

Mk(A, C).
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Proof: We first prove the necessity and then sufficiency. As-
sume thatW is a nontrivial right CCIS. Thus, dim (W) ≥ 1, and
for any w ∈ W , we have

Aiw ∈ W (6a)

Cw = 0. (6b)

According to (6) and Definition 3, we derive

M∞(A, C)w = 0 (7)

which gives the rank deficiency ofM∞(A, C).
To show sufficiency, assume thatM∞(A, C) is rank deficient.

Let

W := ker (M∞(A, C)) �= ∅. (8)

Then, for any w ∈ W , we deduce

M∞(A, C)w = 0. (9)

By the definition ofMk(A, C) and Lk(A, C) in (4), we derive
that

Mk(A, C) =

⎡
⎢⎢⎢⎣
Mk−1(A, C)
Mk−1(A, C)A1

...
Mk−1(A, C)An

⎤
⎥⎥⎥⎦ , k = 2, . . . ,∞. (10)

Mk(A, C)w = 0 and (10) imply that

Mk−1(A, C)Aiw = 0 for all i = 1, . . . , n.

Then, we derive from (9) that

Mk(A, C)Aiw=0 for all k = 1, . . . ,∞, i=1, . . . , n (11)

which indicates Aiw ∈ W . In view ofM∞(A, C) containing
M1(A, C) = C, we obtain

Cw =M1(A, C)w = 0. (12)

Therefore, by (12) and Definition 2, we conclude that W is a
nontrivial right CCIS. �

Lemma 1: If spanrow(Mk(A, C) = spanrow(Mk+1(A, C)),
then spanrow(Mk(A, C)) = spanrow(Mk+2(A, C)).

Proof: Suppose that

spanrow (Mk+1(A, C)) = spanrow (Mk(A, C)) . (13)

By Definition 3, we derive that

spanrow (Mk+1(A, C))

= spanrow (Mk(A, C)) + spanrow (Lk+1(A, C))

= spanrow (Mk(A, C)) + spanrow (Mk(A, C)A1)

+ · · ·+ spanrow (Mk(A, C)An) . (14)

It follows from (13) and (14) that:

spanrow (Mk(A,C)Ai) ⊆ spanrow (Mk(A, C)) (15)

which indicates that

wTAi ∈ spanrow (Mk(A, C)) , i = 1, . . . , n (16)

for all w ∈ spanrow(Mk(A, C)) = spanrow(Mk+1(A, C)).
Then

spanrow (Lk+2(A, C))

= spanrow

⎛
⎜⎝
⎡
⎢⎣
Mk+1(A, C)A1

...
Mk+1(A, C)An

⎤
⎥⎦
⎞
⎟⎠

⊆ spanrow (Mk+1(A, C)) . (17)

According to Definition 3, we have

spanrow (Mk+2(A, C))

= spanrow (Mk+1(A, C)) + spanrow (Lk+2(A, C)) . (18)

Combining (18) with (17) gives

spanrow (Mk+2(A, C)) = spanrow (Mk+1(A, C)) . (19)

We conclude from (13) and (19) that spanrow(Mk+2(A, C))
= spanrow(Mk(A, C)). �

Lemma 2: spanrow(Mr(A, C)) = spanrow(M∞(A, C)).
Proof: It is noted that if C = 0, we can easily from Defini-

tion 3 conclude that

spanrow (M1(A, C)) = spanrow (M2(A, C)) = · · ·
= spanrow (Mr(A, C)) = · · ·
= spanrow (M∞(A, C)) = {0}. (20)

Thus, we only need to show the case of C �= 0.
By Definition 3, we have

spanrow (Mk(A, C))

= spanrow (Mk−1(A, C)) + spanrow (Lk(A, C)) (21)

which indicates

spanrow (Mk−1(A, C)) ⊆ spanrow (Mk(A, C)) (22)

for k = 1, . . . ,∞. Thus

spanrow (M1(A, C)) ⊆ spanrow (M2(A, C))

⊆ · · · ⊆ spanrow (M∞(A, C)) . (23)

From (23) and Lemma 1, we deduce that

spanrow (M1(A, C)) ⊂ spanrow (M2(A, C)) ⊂ · · ·
⊂ spanrow (Ml(A, C)) = spanrow (Ml+1(A, C)) = · · ·
= spanrow (M∞(A, C)) (24)

for some l ∈ {1, . . . ,∞}, which gives

rank (M1(A, C)) < rank (M2(A, C)) < · · ·
< rank (Ml(A, C)) = rank (Ml+1(A, C)) = · · ·
= rank (M∞(A, C)) . (25)

SinceM1(A, C) = C �= 0, we have

rank (M1(A, C)) ≥ 1. (26)
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Algorithm 1: Computation of a Right CCIS.

From (25) and (26), it follows that

rank (M2(A, C)) ≥ 2

rank (M3(A, C)) ≥ 3

...

rank (Ml(A, C)) ≥ l. (27)

On the other hand, it can be seen from Definition 3 that the
matrixMl(A, C) has r columns, i.e.,

rank (Ml(A, C)) ≤ r (28)

According to (27) and (28), we have

l ≤ rank (Ml(A, C)) ≤ r (29)

which indicates

l ≤ r. (30)

Therefore, it can be obtained from (24) and (30) that

spanrow (Mr(A, C)) = spanrow (Mr+1(A, C)) = · · ·
= spanrow (M∞(A, C)) .

�
The existence condition of a right CCIS given by Theo-

rem 1 depends on an infinite matrix and can be converted
equivalently into the following one, which is described by a
finite-dimensional matrix.

Theorem 2: There exists a nontrivial right CCIS W of
A1, . . . , An ∈ R

r×r constrained by C ∈ R
p×r if and only if

Mr(A, C) is rank deficient. Moreover

W = ker (Mr(A, C)) . (31)

Proof: It directly follows from the results of Lemma 2 and
Theorem 1. �

Theorems 1 and 2 represent an algorithm to derive a right CIS
of A1, . . . , An ∈ R

r×r constrained by C ∈ R
p×r, described by

the pseudocode in Algorithm II.
Remark 1: Note that Algorithm II starts by initializing matrix
M1(A, C) as C. Then, the algorithm enters the for-loop on line
2. Within this loop, from line 3 to line 4, the matrices Lk(A, C)
andMk(A, C) are recursively obtained, k = 2, . . . , r. Finally,
W is computed as the kernel space ofMr(A, C). Theorem 2
shows that the kernel space of Mr(A, C) is a right CCIS of

A1, . . . , An constrained by C. Thus, the obtained W is the
desired right CCIS.

Example 1: To demonstrate the specifics and effectiveness of
Algorithm II, consider the following matrices:

A1=

⎡
⎢⎢⎣
0 0 1 1
2 0 1 −1
0 1 0 −1
−1 2 3 2

⎤
⎥⎥⎦, A2=

⎡
⎢⎢⎣
2 1 0 0
−2 2 1 1
1 −3 −2 0
1 2 1 1

⎤
⎥⎥⎦

C=
[
1 1 1 −1]. (32)

By means of Algorithm II, we obtain

M4(A, C)

=
[L�1 (A, C) L�2 (A, C) L�3 (A, C) L�4 (A, C)

]�
(33)

with

L1(A, C) = C =
[
1 1 1 −1]

L2(A, C) =

[
CA1

CA2

]
=

[
3 −1 −1 −3
0 −2 −2 0

]

L3(A, C) =

⎡
⎢⎢⎣
CA1A1

CA2A1

CA1A2

CA2A2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 −7 −7 −1
−4 −2 −2 4
4 −2 −2 −4
2 2 2 −2

⎤
⎥⎥⎦

L4(A, C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA1A1A1

CA2A1A1

CA1A2A1

CA2A2A1

CA1A1A2

CA2A1A2

CA1A2A2

CA2A2A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13 −9 −9 13
−8 6 6 8
0 −10 −10 0
6 −2 −2 −6
8 6 6 −8
−2 6 6 2
6 −2 −2 −6
0 −4 −4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The kernel ofM4(A, C) is

W = ker (M4(A, C))=span{v1,v2}

= span

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
−1
1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (34)

which is a right CIS of A1 and A2 constrained by C.
Let A� := {A�1 , . . . , A�n}. By the duality of left and right

CCISs, the condition for the existence of the left CCIS can be
given as follows.

Theorem 3: There exists a nontrivial left CIS W of
A1, . . . , An ∈ R

r×r constrained by B ∈ R
r×q if and only if

Mr(A�, B�) is rank deficient. Moreover

W = ker
(Mr(A�, B�)

)
. (35)

Since Theorem 3 can be proved similarly to Theorem 2, the
details are omitted here for the sake of brevity.

III. PROPERTIES OF CCIS

In the previous section, the existence conditions of the right
and left CCISs were given based on the ranks of the related
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matrices. In this section, the existence of a right and left CCIS
will be incorporated into a single theorem. Then, the relationship
between CCIS and CE will be revealed.

A. Existence Conditions of CCISs

Definition 4: For a givenn ∈ Z+,FN denotes the set consist-
ing of sequences of elements inN := {1, . . . , n}. The elements
of FN are also called strings or words [31]. Each v ∈ FN is in
the form of

v = α1α2 · · ·αl

for some αk ∈ N , k = 1, . . . , l, where αk stands for the kth
letter of v and l = |v| is the length of v. Let ε denote an empty
word, and |ε| = 0. We denote byF+

N the set of nonempty words.
Definition 5: For a finite collection of matrix Ai ∈

R
n×n, i ∈ N and an element v = α1α2· · ·αl ∈ FN , A(v) is

defined by

A(v) = Aαl
Aαl−1 · · ·Aα1

∈ R
n×n (36)

where A(v) = I if v = ε, i.e., Aε = I .
Definition 6 (Lexicographic Ordering): The lexicographic

ordering < on FN is defined as follows [28]. For any v1, v2 ∈
FN with v1 = α1 α2 · · · αl1 and v2 = β1 β2 · · · βl2 , v1 < v2 if
either |v1| < |v2|, i.e., l1 < l2 or 0 < |v1| = |v2|, v1 �= v2 and
for some k ∈ {1, . . . , |v1|}, αk < βk with the usual ordering of
integers and αi = βi for i = 1, . . . , k − 1. With lexicographic
ordering, the elements of

FN = {v1, v2, . . .} (37)

have the relationship of ε = v1 < v2 < · · · . Notably, the
lexicographic ordering is a complete ordering on the set
FN [32]. In other words, v1 < v2 implies v3v1v4 < v3v2v4
for all v1, v2, v3, v4 ∈ FN\{ε}, where FN\{ε} := {v : v ∈
FN and v /∈ {ε}}.

Example 2: For n = 2, we have

FN = {v1, v2, v3, v4, v5, v6, v7, . . .}
= { ε, 1, 2, 11, 12, 21, 22, . . .}. (38)

Notation 1: The matrix functionHk(A, B,C) is defined by

Hk(A, B,C)

=

⎡
⎢⎢⎢⎣
CA(v1)B CA(v2)B · · · CA(vl)B
CA(v2)B CA(v3)B · · · CA(vl+1)B

... · · · . . .
...

CA(vl)B CA(vl+1)B · · · CA(v2l−1)B

⎤
⎥⎥⎥⎦

=Mk(A, C)M�
k (A�, B�)

∈ R
p(1−nk)

1−n × q(1−nk)
1−n (39)

with

Mk(A, C) ∈ R

p(1−nk)
1−n ×r (40a)

M�
k (A�, B�) ∈ R

r× q(1−nk)
1−n . (40b)

The existence conditions of a right or left CCIS can be
formulated into the following theorem by checking the rank of
only one matrix.

Theorem 4: Matrices A1, . . . , An share a nontrivial right CIS
constrained by C or A1, . . . , An share a nontrivial left CIS
constrained by B if and only if

rank (Hr(A, B,C)) < r. (41)

Proof: We first prove the necessity and then the sufficiency.
Assume thatA1, . . . , An share a nontrivial right CIS constrained
by C. According to Theorem 2, we have

rank (Mr(A, C)) < r. (42)

Recall the Sylvester inequality [33]

rank(X) + rank(Y )− r ≤ rank(XY ) (43a)

rank(XY ) ≤ min{rank(X), rank(Y )} (43b)

for X ∈ R
m×r and Y ∈ R

r×n.
Based on (39), (42), and the Sylvester inequality of (43b), we

derive

rank (Hr(A, B,C))

= rank
(Mr(A, C)M�

r (A�, B�)
)

≤ min{rank(Mr(A, C)), rank(M�
r (A�, B�))}

≤ rank (Mr(A, C)) < r. (44)

To show sufficiency, assume that the inequality of (41) holds.
By the Sylvester inequality of (43a), we can obtain

rank (Mr(A, C)) + rank
(M�

r (A�, B�)
)− r

≤ rank
(Mr(A, C)M�

r (A�, B�)
)
. (45)

In view of (39) and (41), we obtain

rank
(Mr(A, C)M�

r (A�, B�)
)

= rank (Hr(A, B,C)) < r. (46)

With (45) and (46), we have

rank (Mr(A, C)) + rank
(M�

r (A�, B�)
)
< 2r. (47)

It follows from (40) and (47) that:

rank (Mr(A, C)) < r or (48a)

rank
(M�

r (A�, B�)
)
< r. (48b)

By Theorem 2, we conclude that A1, . . . , An share a nontrivial
right CIS constrained by C or A1, . . . , An share a nontrivial left
CIS constrained by B. �

B. Relationship Between CCIS and CE

For a more in-depth understanding of the effectiveness and
novelty of the CCIS, we present further comparisons to the
representative CE approach.
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A vector w is said to be a CE of Ai if and only if w is an
eigenvector of every Ai i.e., there exists an eigenvalue λi of Ai

satisfying Aiw = λiw for every i ∈ N [30], [34].
Theorem 5: If A1, . . . , An ∈ R

r×r have a CE w ∈ C
r satis-

fying

Cw = 0 (49)

then A1, . . . , An admit a CIS constrained by C; however, the
reverse may not hold.

Proof: The condition that A1, . . . , An have a CE w ∈ C
r

satisfying (49) indicates that there exist eigenvalues λi ∈ C

associated with the CE w such that

Aiw = λiw, i = 1, . . . , n. (50)

Let w and λi ∈ C be expressed as

λi = αi + jβi (51a)

w = μ+ jν (51b)

with αi, βi ∈ R, μ,ν ∈ R
r, and j being the imaginary unit. It

follows from (50) and (51) that:

Aiμ+ jAiν = Aiw = λiw = (αi + jβi)(μ+ jν)

= (αiμ− βiν) + j(βiμ+ αiν) (52)

which yields

Aiμ = αiμ− βiν (53a)

Aiν = βiμ+ αiν. (53b)

From (49) and (51b), we obtain

Cμ = Cν = 0. (54)

We conclude from (52) and (54) that the spaceW = span{μ,ν}
is a CIS of A1, . . . , An constrained by C.

However, the reverse is not true. Interestingly, for the matrices
A1, A2 and C given in (32), A1 and A2 have a CISW of (34),
whereas there is no CE of A1 and A2 satisfying (49). �

Remark 2: The concept of an IS of matrix A is similar, and
it is well known that these are subspaces spanned by subsets
of the eigenvectors of A [1]. However, as shown by the proof
of Lemma 5, completely different from the IS, the CCIS of
n matrices A1, . . . , An is not necessarily spanned by a CE of
A1, . . . , An. Therefore, the CCIS can better reveal the structural
properties of multiple matrices than the CE.

IV. CCIS AND REDUCIBILITY

This section applies the established CCIS to multidimensional
(n-D) F-M models. Sufficient and necessary conditions and
the related algorithm are developed for the reducibility of F-M
models utilizing CCIS.

A. CCIS of F-M Model

The F-M model is characterized by [15], [35], [36], [37], [38]

x(i1 + 1, i2 + 1, . . . , in + 1) = A1x(i1, i2 + 1, . . . , in + 1)

+ · · ·+Anx(i1 + 1,

. . . , in−1 + 1, in)

+B1u(i1, i2+1,. . . ,in+1)+· · ·
+Bnu(i1+1,. . . ,in−1+1, in),

(55a)

y(i1,. . . ,in) = Cx(i1,. . . ,in) +Du(i1,. . . ,in)
(55b)

where x(i1, . . . , in) ∈ R
r, u(i1, . . . , in) ∈ R

q , and y(i1, . . . ,
in) ∈ R

p are the (local) state vector, the input vector and the
output vector, respectively; r denotes the order; A1, . . . , An ∈
R

r×r, B1, . . . , Bn ∈ R
r×q, C ∈ R

p×r, D ∈ R
p×q . In the rest

of the article, we denote the F-M model of (55) with A :=
{A1, . . . , An} and B := {B1, . . . , Bn} by (A,B, C,D; r).

The transfer function matrix (TFM) of (55) is given by

H(z1, . . . , zn)=C

(
Ir−

n∑
i=1

ziAi

)−1( n∑
i=1

ziBi

)
+D (56)

where zi represents the unit delay (or backward-shift) opera-
tor [35], [37], [39].

From the F-M model of (55), we can construct both the left
and right CCISs as follows.

Definition 7: For an F-M model (A,B, C,D; r), a subspace
W is said to be a right CCIS of (A,B, C,D; r) if it is a right
CCIS of A1, . . . , An constrained by C. Dually, a subspace W
is said to be a left CCIS of (A,B, C,D; r) if it is a left CCIS of
A1, . . . , An constrained by B with

B =
[
B1 · · · Bn

]
. (57)

Remark 3: Notably, the IS is indeed beneficial to system
identification, analysis, and design [2], [3], [6], [7], [8], [9], [10].
However, due to space limitations, the reducibility of systems
is investigated based on CCIS in this article. We then have the
following result for F-M models.

B. Sufficient Reducibility Conditions for F-M Models

The reducibility to be considered for F-M models is as fol-
lows [34].

Definition 8 (Reducibility of F-M models): For a given F-M
model (A,B, C,D; r), if there is a new (Â, B̂, Ĉ,D; r̂) such
that

C

(
Ir −

n∑
i=1

zkAk

)−1( n∑
k=1

zkBk

)

= Ĉ

(
Ir̂ −

n∑
k=1

zkÂk

)−1( n∑
k=1

zkB̂k

)
, r̂ < r (58)

then the given F-M model (A,B, C,D; r) is reducible.
The inherently complex structural properties of F-M mod-

els, such as those involving n different variable directions and
corresponding n distinct state matrices A1, . . . , An, make it
extremely difficult to derive minimal state-space models. There-
fore, generalizing the well-known traditional IS theory to the
situation with multiple matrices is a long-standing goal and
challenge for many researchers. To this end, motivated by the IS
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for the traditional case, a natural approach is to directly explore
the relationship between the IS and the reducibility of an F-M
model. Then, a sufficient condition for the reducibility of an F-M
model can be given by utilizing the proposed CCIS, as follows.

Theorem 6: An F-M model (A,B, C,D; r) is reducible if it
admits a nontrivial right CCIS.

Proof: Assume thatA1, . . . , An share a nontrivial right CCIS
W with a basis {w1, . . . ,wr̃} with r̃ ≥ 1. Choose r̂ := r − r̃
vectors wr̃+1, . . . ,wr to construct a nonsingular matrix

T :=
[
w1 · · · wr̃ wr̃+1 · · · wr

]
:=

[
T1 T2

]
(59)

and define

L :=

[
L1

L2

]
:= T−1 (60)

with L1 ∈ R
r̃×r and L2 ∈ R

(r−r̃)×r.
We derive from the CIS of Ai, i = 1, . . . , n, that Aiwk,

k = 1, . . . , r̃, can be linearly represented by the r̃ vectors
w1, . . . ,wr̃, i.e., there is a matrix Ai1 ∈ R

r̃×r̃ such that[
Aiw1 · · · Aiwr̃

]
=
[
w1 · · · wr̃

]
Ai1. (61)

Since the n vectors w1, . . .wr ∈ R
n are independent and are

basis vectors for R
n, Aiwk ∈ R

n for all k ∈ {r̃ + 1, . . . , n}
must be linearly represented by the w1, . . .wr ∈ R

n, i.e., there
are matrices Ai2 ∈ R

r̃×(r−r̃) and Ai4 ∈ R
(r−r̃)×(r−r̃) such that[

Aiwr̃+1 · · · Aiwr

]
=
[
w1 · · · wr̃ wr̃+1 · · · wr

][Ai2

Ai4

]
. (62)

It follows from (59), (61), and (62) that:

AiT =
[
Aiw1 · · · Aiwr̃ Aiwr̃+1 · · · Aiwr

]
=

[
w1 · · · wr̃ wr̃+1 · · · wr

] [Ai1 Ai,2

0 Ai4

]

= T

[
Ai1 Ai2

0 Ai4

]
. (63)

Premultiplying both sides of the previous equation by L = T−1

yields

LAiT =

[
Ai1 Ai2

0 Ai4

]
. (64)

From (59), (60), and (64), we obtain

Ai1 = L1AiT1, Ai2 = L1AiT2, Ai4 = L2AiT2. (65)

BecauseW is a CIS constrained by C, we derive

CT1 =
[
Cw1 · · · Cwr̃

]
:=

[
0 · · · 0

]
= 0 (66)

and then

CT =
[
CT1 CT2

]
=
[
0 CT2

]
:=

[
0 C2

]
. (67)

Algorithm 2: Reducing an F-M Model Using a Right CCIS.

Input: (A,B, C,D; r).
Output: (Â, B̂, Ĉ,D; r̂).

1:W = span{w1, . . . ,wr̃} ← Algorithm II;
2: Construct a matrix T in the form of (59) and set matrix

L = T−1;
3: Determine T2 from the matrix T of (59);
4: Obtain L2 from the matrix L of (60);
5: Derive a new F-M model (Â, B̂, Ĉ,D; r̂) by (70).

It follows from (60) that:

LBi =

[
L1Bi

L2Bi

]
:=

[
Bi1

Bi2

]
. (68)

On account of (64), (67), and (68), we derive

C

(
Ir −

n∑
i=1

ziAi

)−1( n∑
i=1

ziBi

)

= CTT−1
(
Ir −

n∑
i=1

ziAi

)−1
L−1L

(
n∑

i=1

ziBi

)

= CT

(
Ir −

n∑
i=1

ziLAiT

)−1( n∑
i=1

ziLBi

)

=
[
0 C2

](
Ir−

n∑
i=1

zi

[
Ai1 Ai2

0 Ai4

])−1( n∑
i=1

zi

[
Bi1

Bi2

])

= C2

(
Ir̂ −

n∑
i=1

ziAi4

)−1( n∑
i=1

ziBi2

)
(69)

which indicates that a new F-M model (Â, B̂, Ĉ,D; r̂) with
lower order r̂ = r − r̃ < r is derived with

Âi = Ai4 = L2AiT2, B̂i = Bi2 = L2Bi

Ĉ = C2 = CT2. (70)

�
Remark 4: The existence of a nontrivial right CCISW of an

F-M model indicates r̃ = dim(W) ≥ 1. By means of the proof
of Theorem 6, the order of the new F-M model (Â, B̂, Ĉ,D; r̂)
is r̂ = r − r̃, which must be less than the order r of the given
F-M model.

Based on the proof of Theorem 6, we present a reduction
algorithm for the F-M model in Algorithm 2.

Remark 5: Algorithm 2 starts with the right CCISW obtained
by Algorithm II. Then, the algorithm constructs matrices T and
L in Line 2. Lines 3 and 4 extract matrices T2 and L2 from
T and L, respectively. Finally, a new lower-order F-M model
(Â, B̂, Ĉ,D; r̂) is determined by (70) in Line 5. It follows from
(70) in the proof of Theorem 6 that the obtained F-M model
(Â, B̂, Ĉ,D; r̂) is equivalent to the original one (A,B, C,D; r),
but with a lower order.

Example 3: To demonstrate the details and effectiveness of
Algorithm 2, consider the F-M model (A,B, C,D; r) where
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A = {A1, A2} and C are given in (32), and

B1 =

⎡
⎢⎢⎣

2
−2
3
1

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0
−2
4
−1

⎤
⎥⎥⎦ , D = 0. (71)

A CIS of A1 and A2 constrained by C is given in (34). Then,
we can construct a nonsingular matrix as follows:

T =

⎡
⎢⎢⎣

0 1 1 0
−1 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ :=

[
T1 T2

]
(72)

and set

L = T−1 =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 −1
0 1 1 0

⎤
⎥⎥⎦ :=

[
L1

L2

]
. (73)

According to (60), a new 2-D F-M model (Â, B̂, Ĉ,D; r̂) with
lower order is determined by

Â1 =

[
1 −2
2 1

]
, Â2 =

[
1 −1
−1 −1

]

B̂1 =

[
1
1

]
, B̂2 =

[
1
2

]
, Ĉ =

[
1 1

]
D = 0, r̂ = 4− 2 = 2. (74)

The reducibility condition based on the right CCIS of the F-M
model has been presented in Theorem 6. In a similar manner,
the reducibility condition can be determined based on the left
CCIS.

Theorem 7: An F-M model (A,B, C,D; r) is reducible if it
admits a nontrivial left CCIS.

Proof: Since the proof of Theorem 7 can be proved similarly
to that of Theorem 6, we give only the main ideas of the proof.

Assume that A1, . . . , An share a nontrivial left CCIS V with
a basis {v1, . . . ,vr̃} with r̃ ≥ 1. Choose r̂ := r − r̃ vectors
vr̃+1, . . . ,vr to construct a nonsingular matrix

T̂� :=
[
v1 · · · vr̃ vr̃+1 · · · vr

]
:=

[
T̂�1 T̂�2

]
(75)

and define

R :=
[
R1 R2

]
:= T̂−1 (76)

with T̂1 ∈ R
r̃×r, T̂2 ∈ R

(r−r̃)×r, R1 ∈ R
r×r̃, and R2 ∈

R
r×(r−r̃). The given F-M model (A,B, C,D; r) can be exactly

reduced to the new one (Â, B̂, Ĉ,D; r̂) with

Âi = T̂2AiR2, B̂i = T̂2Bi, Ĉ = CT̂2

r̂ = r − r̃ < r. (77)

�
Remark 6: The so-called CE approach in [34] states that a

given F-M model (A,B, C,D; r) can be reduced if A1, . . . , An

share a CE w such that (49) holds. As clarified in Section III-B,

the reducibility condition given in the CE approach [34] always
requires the existence of a CCIS; however, the opposite is not
necessarily true. As a result, the reducibility conditions in [30]
and [34] can only be viewed as the eigenvector-based IS of
dimension one. Therefore, the CCIS approach is more general
and practical than existing methods.

C. Necessary Reducibility Conditions for F-M Models

This section shows that the sufficient reducibility condition
given in the previous section is also necessary in the noncom-
mutative setting (NCS). To this end, the following definitions
are required.

Definition 9: A formal power series of the TFM in the NCS
is defined by

H(z1, . . . , zn) =
∑
w∈FN

Hwz
(w) (78)

where Hw is the coefficient matrix w.r.t.

z(w) = zαl
zαl−1 · · · zα1

(79)

with w = α1α2 · · ·αl. Note that the variables z1, . . . , zn in (78)
are not commutative (see, e.g., [40], [41]), i.e.,

zα1
zα2
�= zα2

zα1

for all α1 �= α2 and α1, α2 ∈ N .
Now, the TFM of an F-M model in the NCS can be stated as

follows.
Definition 10: For the TFM H(z1, . . . , zn) of (56), if one as-

sumes the unit delay operators z1, . . . , zn are noncommutative,
i.e., zα1

zα2
�= zα2

zα1
for α1 �= α2 and α1, α2 ∈ N , then such

a TFM is called noncommutative. In other words, the noncom-
mutative TFM of the F-M model (A,B, C,D; r) is expressed as

H(z1, . . . , zn) = C

∞∑
k=0

(
n∑

i=1

Aizi

)k( n∑
i=1

Bizi

)
+D

=
∑

w∈F+
N

CA(v)Bα1
z(w) +D (80)

where w = α1α2· · ·αl = α1v ∈ F+
N , A(v) and z(w) are de-

fined in (36) and (79), respectively.
Remark 7: One of the primary motivations for exploring the

NCS comes from its connection to robust control, as elaborated
in [40] and [41]. Specifically, this connection is manifested
through the consideration of formal power series in noncommu-
tative indeterminates, particularly in relation to the structured
singular value concerning time-variant structured uncertainties
modeled by a linear fractional model [40], [41]. Another note-
worthy application, emerging more recently, is from a quantum
physical interpretation of recursion in the noncommutative F-M
model in terms of quantum filtering and quantum tomogra-
phy [42].

Furthermore, in numerous cases, a commutative result can
be attained by shifting to the NCS, leveraging noncommutative
theory, and subsequently reverting to the commutative context.
A notable illustration of this methodology is found in the seminal
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work of FM [43], where they employed this approach to establish
a state-space realization theorem for rational functions involving
multiple commuting variables.

Next, the realization and reduction of the F-M model in the
NCS can be stated as follows.

Definition 11: For a given TFM H(z1, . . . , zn) in the form
of (78) if there exist matrices A1, . . . , An, B1, . . . , Bn, C and
D such that

CA(v)Bα1
= Hw, D = H(ε) (81)

where w = α1α2· · ·αl = α1v ∈ F+
N , A(v) and zw are defined

in (36) and (79), respectively, then (A,B, C, D; r) is called an
F-M model realization of (78) in the NCS.

Definition 12: For a given F-M model (A,B, C,D; r), if there
is a new one (Â, B̂, C, D; r̂) satisfying

ĈÂvB̂α1
z(w) = CA(v)Bα1

z(w), r̂ ≤ r (82)

for all w = α1α2· · ·αl = α1v ∈ F+
N , A(v) and z(w) being

defined in (36) and (79), respectively; then, the given F-M model
is reducible.

The necessary reducibility condition for the F-M model in the
NCS can be given as follows.

Theorem 8: For an F-M model (A,B, C,D; r), if there
is another one (Â, B̂, Ĉ, D̂; r̂) with r̂ < r such that they
share the same noncommutative TFM, then the F-M model
(A,B, C,D; r) admits a left or right CCIS.

Proof: Assume that there is a reduced-order F-M
model (Â, B̂, Ĉ, D̂; r̂) for (A,B, C,D, r) with r̂ < r, but
(A,B, C,D; r) has no left or right CCIS. We derive from
the same noncommutative TFMs of (A,B, C,D; r) and
(Â, B̂, Ĉ, D̂; r̂) that

Hr(A, B,C) = Hr(Â, B̂, Ĉ)

=Mr(Â, Ĉ)M�
r (Â

�, B�). (83)

Note thatMr(Â, Ĉ) ∈ R
p(1−nr̂)

1−n ×r̂; thus, we have

rank
(
Mr(Â, Ĉ)

)
≤ r̂ < r. (84)

According to Sylvester inequality (43), we obtain

rank
(Hr(A, B,C)

)
= rank

(Hr(Â, B̂, Ĉ)
)
< r. (85)

From Theorem 4, we have that the F-M model (A,B, C,D; r)
has a left or right CCIS, which contradicts the assumption. �

V. STATE-FEEDBACK CONTROL OF RATIONAL PARAMETER

SYSTEMS

This section proposes an H∞ gain-scheduled state-feedback
controller synthesis for rational parameter systems to further
illustrate the superiority of the established CCIS.

A. Discrete-Time Rational Parameter System

Consider the discrete-time rational parameter system
(DTRPS) [44]

xk+1 = Ax(θk)xk +Bxu(θk)uk +Bxw(θk)wk (86a)

zk = Cz(θk)xk+Dzu(θk)uk+Dzw(θk)wk (86b)

where xk ∈ R
mx , uk ∈ R

mu , wk ∈ R
mw , and zk ∈ R

mz are
the state vector, control input vector, disturbance vector, and
controlled output vector, respectively, and all the matrices are
rational and continuous in time-varying parameters collected in
θk ∈ Θ = {(θk1, . . . , θkn) ∈ Θ1 × · · · ×Θn}. Here, Θi is the
convex hull of the vertices θ

[1]
i , . . . , θ

[vi]
i , i.e., θki ∈ Θi can be

expressed as

θki =

vi∑
li=1

αi,liθ
[li]
i (87)

with
vi∑

li=1

αi,li = 1 (88)

andαi,li ≥ 0, li = 1, . . . , vi. We denote byL := L1 × · · · × Ln

the set of all extremal values of the parameters in θk, and an
element of L is denoted by θ[l] with l = (l1, . . . , ln). Then, the
total number of vertices in Θ is

Nθ =
n∏

i=1

vi.

Assuming that the parameter θk is available online for con-
troller implementation, we are interested in designing a gain-
scheduled state-feedback controller

uk = K(θk)xk =

(
K0 +

n∑
i=1

Kiθki

)
xk (89)

that solves the H∞-optimal control problem

min
K(θk),γ>0

γ

s.t. ‖zk‖ ≤ γ ‖wk‖ (90)

for the closed-loop system

xk+1 = Ac(θk)xk +Bxw(θk)wk (91a)

zk = Cc(θk)xk +Dzw(θk)wk (91b)

where the subscript c denotes the closed-loop system and

Ac(θk) := Ax(θk) +Bxu(θk)K(θk) (92a)

Cc(θk) := Cz(θk) +Dzu(θk)K(θk). (92b)

A smaller γ is desirable for better performance [45], [46].

B. Modeling for DTRPSs

The system (86) can be rewritten as

[
xk+1

zk

]
= G(θk)

⎡
⎣xk

uk

wk

⎤
⎦ (93)

with

G(θk) :=

[
Ax(θk) Bxu(θk) Bxw(θk)
Cz(θk) Dzu(θk) Dzw(θk)

]

∈ R
(mx+mz)×(mx+mu+mw)(θk). (94)
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Remark 8: The F-M model realization obtains an F-M
model (A,B, C,D; r) such that (56) holds from a given
multidimensional dimensional (n-D) rational transfer matrix
H(z1, . . . , zn), which has already been investigated extensively
and intensively (see, e.g., [35], [37]). If we algebraically view
the uncertain variable θki as the unit delay (or backward-shift)
operator zi, it follows from (56) that the uncertain rational matrix

G�(θk) =

⎡
⎣ A�x (θk) C�z (θk)
B�xu(θk) D�zu(θk)
B�xw(θk) D�zw(θk)

⎤
⎦

∈ R
(mx+mu+mw)×(mx+mz)(θk) (95)

can be expressed as

G�(θk) = C

(
Ir −

n∑
i=1

θkiAi

)−1( n∑
i=1

θkiBi

)
+D. (96)

In view of (96), we derive that

G�(θk)

=
[
D C

] [Imx+mz
0

0 Ir−
∑n

i=1 θkiAi

]−1[
I∑n

i=1 θkiBi

]
.

(97)

Let ⎡
⎣Edx

Edu

Edz

⎤
⎦ :=

[
D C

]
(98a)

Edπ(θk) :=

[
I 0
0 Ir−

∑n
i=1 θkiAi

]
(98b)

[
Bd1(θk) Bd2(θk)

]
:=

[
I∑n

i=1 θkiBi

]
(98c)

with

Edx ∈ R
mx×(r+mx+mz) (99a)

Edu ∈ R
mu×(r+mx+mz) (99b)

Edw ∈ R
mw×(r+mx+mz) (99c)

Edπ(θk) ∈ R
(r+mx+mz)×(r+mx+mz)(θk) (99d)

Bd1(θk) ∈ R
(r+mx+mz)×mx(θk) (99e)

Bd2(θk) ∈ R
(r+mx+mz)×mz (θk). (99f)

Here, the subscript d indicates that the transfer function G�(θk)
is dual of G(θk).

It can be seen from (98) that the parameter-varying matrix
functions Edπ(θk) and Bd1(θk) and Bd2(θk) are all linear
affine on θk, i.e., each of these matrices can be represented in
the form of

M(θk) =M0 +

n∑
i=1

Miθki. (100)

Remark 9: It is interesting to note that using the relation
(87), (88) and applying homogenization procedure, which was

developed in [47] to an affine matrixM(θk) of (100), we can
obtain

M(θk) =

(v1,...,vn)∑
l=(1,...,1)

α1,l1 · · ·αn,lnM[l] (101)

whereM[l] are the vertices.
In view of (95), (96), and (98), we derive that

A�x (θk) = EdxE
−1
dπ (θk)Bd1(θ) (102a)

B�xu(θk) = EduE
−1
dπ (θk)Bd1(θ) (102b)

C�z (θk) = EdxE
−1
dπ (θk)Bd2(θ) (102c)

D�zu(θk) = EduE
−1
dπ (θk)Bd2(θ) (102d)

B�xw(θk) = EdwE
−1
dπ (θk)Bd1(θ) (102e)

D�zw(θk) = EdwE
−1
dπ (θk)Bd2(θ). (102f)

C. Gain-Scheduled State-Feedback Control of Rational
Parameter Systems

The H∞ performance of (91) is equal to the performance of
the dual system defined by

xd(k+1) =A�c (θk)xdk + C�c (θk)wdk (103a)

zdk =B�xw(θk)xdk +D�zw(θk)wdk. (103b)

According to (102a)–(102d), (103a) can be rewritten as

xd(k+1) = (Edx(θk) +K�(θk)Edu(θk))

× E−1dπ (θk)(Bd1(θk)xdk +Bd2(θk)wdk)

= (Edx(θk) +K�(θk)Edu(θk))(−πdk) (104)

with

πdk := −E−1dπ (θk)(Bd1(θk)xdk +Bd2(θk)wdk). (105)

In view of (102e)–(102f), (103b) can be represented as

zd(k+1) =
(
EdwE

−1
dπ (θk)Bd1(θ)

)
xdk

+
(
EdwE

−1
dπ (θk)Bd2(θ)

)
wdk

= − Edwπdk. (106)

Let

Ed(θk) :=

⎡
⎣I 0 Edx +K�(θk)Edu 0 0
0 I Edw 0 0
0 0 Edπ(θk) Bd1(θk) Bd2(θk)

⎤
⎦

(107a)

η�dk :=
[
x�d(k+1) z�dk π�dk x�dk w�dk

]
. (107b)

Then, it follows from (104), (105), and (106) that the system of
(103) is equivalent to the following system:

Ed(θk)ηdk = 0. (108)

Therefore, the H∞ performance of the closed-loop system (92)
is equal to that of Ed(θk)ηdk = 0.
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Define

Ndx(θk) :=
[
Sdx(θk) 0 Sdx(θk)Edx+Sdy(θk)Edu 0 0

]
(109a)

Ndπ(θk) :=

[
0 I Edw 0 0
0 0 Edπ(θk) Bd1(θk) Bd2(θk)

]
(109b)

where Sdx(θk) and Sdy(θk) are affine matrices on θk with ap-
propriate sizes. Let Pd(θk) be an affine matrix on θk with an ap-

propriate size. P [l]
d , P [l+]

d , S[l]
dx, S[l]

dy , N [l]
dx, and N

[l]
dπ represent the

vertices of Pd(θk), Pd(θk+1)Sdx(θk), Sdy(θk), Ndx(θk), and
Ndπ(θk), respectively. Then, the gain-scheduled state-feedback
controller for the DTRPS can be given by the following result.

Theorem 9: If there exist Nθ symmetric positive-definite ma-

trices P [l]
d , P

[l+]
d and matrix S

[l]
dx, S

[l]
dy , and Sdπ of an appropriate

size such that

diag
(
P

[l+]
d , I, 0, −P [l]

d , −γ2I
)

≺
{[

I
0

]
N

[l]
dx

}s

+
{
SdπN

[l]
dπ

}s

(110)

hold simultaneously, then the gain-scheduled state-feedback
gains

K(θk) =

(v1,...,vn)∑
l=(1,...,1)

α1,l1 · · ·αn,lnK
[l] (111)

with

K [l] =
(
S
[l]
dy

)�((
S
[l]
dx

)�)−1
guarantee that the closed-loop system of (91) has an H∞ perfor-
mance smaller than γ regardless of θ ∈ Θ.

Proof: By the convexity of matrix inequalities, we derive that
the linear matrix inequalities (LMIs) of (110) hold if and only if

diag
(
Pd(θk+1), I, 0, −Pd(θk), −γ2I

)
≺
{[

I
0

]
Ndx(θk)

}s

+ {SdπNdπ(θk)}s (112)

for all uncertainties θ ∈ Θ. With the change of variable
Sdy(θk) = Sdx(θk)K

�(θk), we obtain

diag
(
Pd(θk+1), I, 0, −Pd(θk), −γ2I

)
≺ {Sd(θk)Ed(θk)}s (113)

with

Sd(θk) =

[
Sdx(θk)

0
Sdπ

]
.

After congruence operation of ηdk �= 0 on this last matrix in-
equality, along the trajectories (Ed(θk)ηdk = 0)

x�d(k+1)Pd(θk+1)xd(k+1) − x�dkPd(θk)xdk

+ z�dkzdk − γ2 w�dkwdk < 0 (114)

which is sufficient to conclude about asymptotic stability
(strictly decreasing Lyapunov function x�dPd(θk)xd for zero

TABLE I
COMPLEXITY OF THE LMI PROBLEMS FOR SEVERAL SIZES OF F-M MODELS

disturbances) and induced norm performance ‖zd‖2 ≤ γ‖wd‖2
for zero initial conditions. �

Remark 10: It follows from (98), (109), and (110) that the
sizes of the matrices P [l]

d , P
[l+]
d , S[l]

dx, S
[l]
dy and Sdπ to be solved

by the LMIs of (110) are determined by the order of the F-M
model. Thus, the complexity of the LMI problems solved by
Theorem 9 is directly related to the order of the F-M model. To
highlight this point, the total rows of all LMI restrictions Nr and
the number of decision variables Nv for the LMIs of Theorem
9 are computed. For an F-M model with order r, we have

Nr = N2
θ × (3mx + 2mz +mw + r) (115a)

Nv = Nθ ×
(
1.5m2

x +mxmu + 0.5mx

)
+ 1

+ (3mx + 2mz +mw + r)× (mx +mz +mw + r)
(115b)

where mx, mumw, and mz are the sizes of xk, uk, wk, and zk,
respectively, and Nθ is the total number of vertices. To highlight
the difference, several values are presented in Table I according
to these parameters. It can easily be seen that the higher-order
F-M model can lead to large-size problems very quickly. Thus,
to reduce the numerical complexity and computation in the LMIs
of (110), a lower-order F-M model is obtained by applying the
established CCIS approach.

Example 4: To demonstrate the effectiveness of the pro-
posed gain-scheduled state-feedback controller and the CCIS
approach, consider the DTRPS of (86) with

Ax(θk) =

[
− θk2

1+θk2
− θk2

1+θk2

1 − θk1+θk1θk2+θk3

1+θk1+θk2

]

Bxu(θk) =

[
0
θk2

]
, Bxw(θk) =

[
1

1+θk2

0

]

Cz(θk) =
[
1 −θk1θk2

]
Dzu(θk) = θk1 + θk2, Dzw(θk) = 1. (116)

The three parameters θk1, θk2, and θk3 are in intervals around
the nominal value 0 with discrepancies δ1, δ2, δ3, i.e., θki ∈
[−δi, δi], i = 1, 2, 3.

To conduct a state feedback design for the DTRPS of (116),
we need to obtain a 3-D F-M model for G�(θk) in the form
of (96). Applying the F-M model realization method of [35] to
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G�(θk) yields an F-M model with order 10 as shown in (117).

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B3=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C=

⎡
⎢⎢⎣
−1 0 0 0 0 0 0 0 0 0
−1 0 1 0 1 1 0 0 0 −1
0 0 0 1 0 1 1 1 1 0
−1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦,

TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS

D =

⎡
⎢⎢⎣
0 1 1
0 0 0
0 0 0
1 0 1

⎤
⎥⎥⎦ . (117)

To reduce the complexity of the analysis, we can apply the
established CCIS approach to obtain a much lower-order F-M
model

Â1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 −1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, B̂1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 0
0 0 −1
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Â2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 0 0 0 0 0
0 −1 −1 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, B̂2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Â3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, B̂3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Ĉ =

⎡
⎢⎢⎣
−1 0 0 0 0 0
−1 1 0 1 1 0
0 0 1 0 1 1
−1 0 0 0 0 0

⎤
⎥⎥⎦ , D̂ =

⎡
⎢⎢⎣
0 1 1
0 0 0
0 0 0
1 0 1

⎤
⎥⎥⎦ (118)

whose order is 6.
Table II details the total number of rows in all LMI restrictions

Nr, the count of scalar decision variables Nv and the computa-
tion time. The variables Nr and Nv are crucial for solving the
problem and directly impact the overall computational complex-
ity [44]. From Table II, it is evident that the proposed method
requires fewer decision variables, fewer total rows, and less com-
putation time compared with the method in [48]. Additionally,
the lower-order model exhibits a nearly one-third reduction in
both decision variables and total rows compared with the high-
order model. This highlights the effective reduction in numerical
complexity achieved through lower-order representation.

Table III summarizes the minimum values of H∞ perfor-
mance γmin using our design conditions and the method in [48]
for different discrepancies δ1 = δ2 = δ3 = δ. Compared with
the work in [48], the H∞ state feedback controller design con-
ditions proposed in this article are significantly less conservative.
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TABLE III
COMPARISON OF γMIN STATE FEEDBACK H∞ CONTROL

Moreover,H∞ state feedback controllers based on a lower-order
representation lead to less conservative than those based on a
higher-order representation. All LMIs were formulated by using
the YALMIP parser [49] and solved with the SDPT3 solver [50].

Taking δ1 = δ2 = δ3 = 0.25 and applying Theorem 9 to the
different-order F-M model of (117) and (118) yields state feed-
back gains, respectively

K(1,1,1) =
[
3.5143 −0.7634]

K(1,1,2) =
[
3.8194 −0.1393]

K(1,2,1) =
[−1.4230 0.2868

]
K(1,2,2) =

[−1.2821 0.1781
]

K(2,1,1) =
[
1.8696 0.1414

]
K(2,1,2) =

[
2.1379 0.8331

]
K(2,2,1) =

[−2.7885 0.1516
]

K(2,2,2) =
[−2.4772 0.0128

]
(119)

and

K̂(1,1,1) =
[
3.5111 −0.7332]

K̂(1,1,2) =
[
3.7983 −0.0719]

K̂(1,2,1) =
[−1.2684 0.3513

]
K̂(1,2,2) =

[−0.9815 0.1507
]

K̂(2,1,1) =
[
1.8231 0.2305

]
K̂(2,1,2) =

[
2.0948 0.8694

]
K̂(2,2,1) =

[−2.6228 0.2286
]

K̂(2,2,2) =
[−2.3534 0.0960

]
. (120)

VI. CONCLUSION

The notion of CCIS has been proposed to take into account the
overall structural characteristics of all state matrices. The nec-
essary and sufficient conditions for the existence of CCIS have
been established, and the corresponding calculation algorithm
has been given. It has been proved that the existence of a CE leads
to the existence of CCIS, but not vice versa, so the established
CCIS can better reveal the internal structural properties of multi-
ple matrices than the CE. Based on this CCIS, the necessary and
sufficient reducibility conditions and the associated reduction
algorithms for the F-M model have been developed. Moreover,
a gain-scheduled state-feedback control has been proposed for
rational parameter systems, the numerical complexity of which
can be greatly reduced by applying CCIS. Examples have been
provided to highlight the details and effectiveness of the new
approach.
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